Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 035202    DOI: 10.1088/1674-1056/23/3/035202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Electromagnetic interaction between local surface plasmon polaritons and an atmospheric surface wave plasma jet

Chen Zhao-Quan (陈兆权)a, Hu Dong (胡东)a, Liu Ming-Hai (刘明海)b, Xia Guang-Qing (夏广庆)c, Zheng Xiao-Liang (郑晓亮)a, Hu Ye-Lin (胡业林)a, Ye Qiu-Bo (叶秋波)a, Chen Ming-Gong (陈明功)a, Zhu Long-Ji (祝龙记)a, Hu Xi-Wei (胡希伟)b
a College of Electrical & Information Engineering, Anhui University of Science and Technology, Huainan 232001, China;
b State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
c State Key Laboratory of Structure Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
Abstract  We analyze the electromagnetic interaction between local surface plasmon polaritons (SPPs) and an atmospheric surface wave plasma jet (ASWPJ) in combination with our designed discharge device. Before discharge, the excitation of the SPPs and the spatial distribution of the enhanced electric field are analyzed. During discharge, the critical breakdown electric field of the gases at atmospheric gas pressure and the surface wave of the SPPs converted into electron plasma waves at resonant points are studied. After discharge, the ionization development process of the ASWPJ is simulated using a two-dimensional fluid model. Our results suggest that the local enhanced electric field of SPPs is merely the precondition of gas breakdown, and the key mechanism in maintaining the discharge development of a low-power ASWPJ is the wave-mode conversion of the local enhanced electric field at the resonant point.
Keywords:  surface wave plasma      surface plasmon polaritons      numerical simulation      electromagnetic interaction  
Received:  25 July 2013      Revised:  27 August 2013      Accepted manuscript online: 
PACS:  52.50.Sw (Plasma heating by microwaves; ECR, LH, collisional heating)  
  52.40.Fd (Plasma interactions with antennas; plasma-filled waveguides)  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
  52.25.Os (Emission, absorption, and scattering of electromagnetic radiation ?)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11105002), the Open-end Fund of State Key Laboratory of Structural Analysis for Industrial Equipment, China (Grant No. GZ1215), the Natural Science Foundation for University in Anhui Province of China (Grant No. KJ2013A106), and the Doctoral Scientific Research Funds of Anhui University of Science and Technology, China.
Corresponding Authors:  Chen Zhao-Quan, Hu Dong     E-mail:  zqchen@aust.edu.cn;austhudong@126.com

Cite this article: 

Chen Zhao-Quan (陈兆权), Hu Dong (胡东), Liu Ming-Hai (刘明海), Xia Guang-Qing (夏广庆), Zheng Xiao-Liang (郑晓亮), Hu Ye-Lin (胡业林), Ye Qiu-Bo (叶秋波), Chen Ming-Gong (陈明功), Zhu Long-Ji (祝龙记), Hu Xi-Wei (胡希伟) Electromagnetic interaction between local surface plasmon polaritons and an atmospheric surface wave plasma jet 2014 Chin. Phys. B 23 035202

[1] Schlüter H and Shivarova A 2007 Phys. Rep. 443 121
[2] Choi J, Iza F, Do H J, Lee J K and Cho M H 2009 Plasma Sources Sci. Technol. 18 025029
[3] Takamura S, Amano S, Kurata T, Kasada H, Yamamoto J, Razzak M A, Kushida G, Ohno N and Kando M 2011 J. Appl. Phys. 110 043301
[4] Aleksandrov K V, Bychkov V L, Esakov I I, Grachev L P, Khodataev K V, Ravaev A A and Matveev I B 2009 IEEE Trans. Plasma Sci. 37 2293
[5] Yoshiteru H, Choi E M, Mastovsky I, Shapiro M A, Sirigiri J R and Temkin R J 2008 Phys. Rev. Lett. 100 035003
[6] Jean-Pierre B, Bhaskar C and Zhu G Q 2010 Phys. Rev. Lett. 104 015002
[7] Zhu G, Boeuf J P and Li J 2012 Acta. Phys. Sin. 61 235202 (in Chinese)
[8] Zhou Q, Dong Z and Chen J 2011 Acta. Phys. Sin. 60 125202 (in Chinese)
[9] Yang J, Shi F, Yang T and Meng Z 2010 Acta. Phys. Sin. 59 8701 (in Chinese)
[10] Hubner S, Palomares J M, Carbone E A D and van der Mullen J J A M 2012 J. Phys. D: Appl. Phys. 45 055203
[11] Hnilica J, Kudrle V, Vasina P, Schafer J and Aubrecht V 2012 J. Phys. D: Appl. Phys. 45 055201
[12] Chen Z, Liu M, Xia G and Huang Y 2012 IEEE Trans. Plasma Sci. 40 2861
[13] Chen Z, Xia G, Zhou Q, Hu Y, Zheng X, Zhen Z, Hong L, Li P and Huang Y 2012 Rev. Sci. Instrum. 83 084701
[14] Xu X, Liu F, Zhou Q, Liang B, Liang Y and Liang R 2008 Appl. Phys. Lett. 92 011501
[15] Wang L, Cao J, Wang Y, Niu T, Liu L and Lv Y 2008 Chin. Phys. B 17 2257
[16] Chen Z, Liu M, Lan C, Chen W, Luo Z and Hu X 2008 Chin. Phys. Lett. 25 4333
[17] Chen Z, Liu M, Lan C, Chen W, Tang L, Luo Z, Yan B, Lv J and Hu X 2009 Chin. Phys. B 18 3484
[18] Wu S, Wang Z, Huang Q, Lu X and Ostrikov K 2012 Phys. Plasmas 19 103503
[19] Agranovich V M and Mills D L 1982 Surface Polaritions-Electromagnetic Waves at Surfaces and Interfaces (Netherlands: Elsevier) Chaps. 1 and 9
[20] Chen Z, Liu M, Tang L, Hu P and Hu X 2009 J. Appl. Phys. 106 013314
[21] Chen Z, Liu M, Tang L, Lv J, Wen Y and Hu X 2009 J. Appl. Phys. 106 063304
[22] Chen Z, Liu M, Zhou Q, Hu Y, Yang A, Zhu L and Hu X 2011 Chin. Phys. Lett. 28 045201
[23] Itikaza Y 1973 Phys. Fluids 16 831
[24] Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer-Verlag)
[25] Wu T J, Guan W J, Tsai C M, Yeh W Y and Kou C S 2001 Phys. Plasmas 8 3195
[26] Chen Z, Liu M, Tang L, Lv J and Hu X 2010 Chin. Phys. Lett. 27 025205
[27] Ghanashev I and Sugai H 2000 Phys. Plasmas 7 3051
[28] Chen Z, Liu M, Hong L, Zhou Q, Cheng L and Hu X 2011 Phys. Plasmas 18 013505
[29] Chen Z, Ye Q, Xia G, Hong L, Hu Y, Zheng X, Li P, Zhou Q, Hu X and Liu M 2013 Phys. Plasmas 20 033502
[30] Yang A, Wang X, Rong M, Liu D, Iza F and Kong M G 2011 Phys. Plasmas 18 113503
[31] Kawamura E, Graves D B and Lieberman M A 2011 Plasma Sources Sci. Technol. 20 035009
[32] Chen Z, Xia G, Li P, Hong L, Hu Y, Zheng X, Wang Y, Huang Y, Zhu L and Liu M 2013 IEEE Trans. Plasma Sci. 41 1658
[1] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[2] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[3] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[4] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[5] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[6] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[7] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[8] Improvement of femtosecond SPPs imaging by two-color laser photoemission electron microscopy
Chun-Lai Fu(付春来), Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Xiao-Wei Song(宋晓伟), Peng Lang(郎鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107103.
[9] Two-color laser PEEM imaging of horizontal and vertical components of femtosecond surface plasmon polaritons
Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Lun Wang(王伦), Peng Lang(郎鹏), Xiao-Wei Song(宋晓伟), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107104.
[10] Mode splitting and multiple-wavelength managements of surface plasmon polaritons in coupled cavities
Ping-Bo Fu(符平波) and Yue-Gang Chen(陈跃刚). Chin. Phys. B, 2022, 31(1): 014216.
[11] High-confinement ultra-wideband bandpass filter using compact folded slotline spoof surface plasmon polaritons
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Ling-Ling Wang(王玲玲), Qi-Ming Yu (余奇明), Jian-Lou(娄健), and Shi-Ning Sun(孙世宁). Chin. Phys. B, 2022, 31(1): 014102.
[12] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
[13] Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region
Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲). Chin. Phys. B, 2021, 30(8): 084102.
[14] Bound states in the continuum on perfect conducting reflection gratings
Jianfeng Huang(黄剑峰), Qianju Song(宋前举), Peng Hu(胡鹏), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2021, 30(8): 084211.
[15] Evolution of melt convection in a liquid metal driven by a pulsed electric current
Yanyi Xu(徐燕祎), Yunhu Zhang(张云虎), Tianqing Zheng(郑天晴), Yongyong Gong(龚永勇), Changjiang Song(宋长江), Hongxing Zheng(郑红星), and Qijie Zhai(翟启杰). Chin. Phys. B, 2021, 30(8): 084701.
No Suggested Reading articles found!