Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 030309    DOI: 10.1088/1674-1056/23/3/030309
RAPID COMMUNICATION Prev   Next  

All-electrically reading out and initializing topological qubits with quantum dots

Chen Wei (陈伟)a b, Xue Zheng-Yuan (薛正远)b c, Wang Z. D.(汪子丹)b, Shen Rui (沈瑞)a
a National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China;
b Department of Physics and Center of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China;
c Laboratory of Quantum Information Technology, and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
Abstract  We analyze the reading and initialization of a topological qubit encoded by Majorana fermions in one-dimensional semiconducting nanowires, weakly coupled to a single level quantum dot (QD). It is shown that when the Majorana fermions are fused by tuning gate voltage, the topological qubit can be read out directly through the occupation of the QD in an energy window. The initialization of the qubit can also be realized via adjusting the gate voltage on the QD, with the total fermion parity conserved. As a result, both reading and initialization processes can be achieved in an all-electrical way.
Keywords:  quantum dot      Majorana fermion      topological qubit  
Received:  07 October 2013      Revised:  04 December 2013      Accepted manuscript online: 
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  71.10.Pm (Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.))  
  74.45.+c (Proximity effects; Andreev reflection; SN and SNS junctions)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2011CB922100, 2011CBA00205, and 2013CB921804), the General Research Fund (GRF) of the Research Grants Council (RGC) of Hong Kong, China (Grant Nos. HKU7058/11P and HKU7045/13P), the Collaborative Research Fund (CRF) of the Research Grants Council (RGC) of Hong Kong, China (Grant No. HKU-8/11G), the University Research Committee (URC) Fund of the Hong Kong University (HKU), China, the National Natural Science Foundation of China (Grant Nos. 11074111, 11023002, and 11004065), the Priority Academic Program Development of Jiangsu Higher Education Institutions, China, the Program for New Century Excellent Talents in University of Ministry of Education of China, the Program for Changjiang Scholars and Innovative Research Team in University, China, and the Fundamental Research Funds for the Central Universities of Ministry of Education of China.
Corresponding Authors:  Wang Z. D., Shen Rui     E-mail:  zwang@hku.hk;shen@nju.edu.cn

Cite this article: 

Chen Wei (陈伟), Xue Zheng-Yuan (薛正远), Wang Z. D.(汪子丹) , Shen Rui (沈瑞) All-electrically reading out and initializing topological qubits with quantum dots 2014 Chin. Phys. B 23 030309

[1] Nayak C, Simon S, Stern A, Freedman M and Das Sarma S 2008 Rev. Mod. Phys. 80 1083
[2] Kitaev A Y 2001 Phys. Usp. 44 131
[3] Alicea J 2012 Rep. Prog. Phys. 75 076501
[4] Moore G and Read N 1991 Nucl. Phys. B 360 362
[5] Read N and Green D 2000 Phys. Rev. B 61 10267
[6] Ivanov D A 2001 Phys. Rev. Lett. 86 268
[7] Zhou J H, Qin T and Shi J R 2013 Chin. Phys. Lett. 30 017401
[8] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
[9] Li X G, Zhang G F, Wu G F, Chen H, Dimitrie C and Zhang Z Y 2013 Chin. Phys. B 22 097306
[10] Oreg Y, Refael G and von Oppen F 2010 Phys. Rev. Lett. 105 177002
[11] Lutchyn R M, Sau J D and Das Sarma S 2010 Phys. Rev. Lett. 105 077001
[12] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2012 Science 336 1003
[13] Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P and Xu H Q 2012 Nano Lett. 12 6414
[14] Das A, Ronen Y, Most Y, Oreg Y, Heiblum M and Shtrikman H 2012 Nat. Phys. 8 887
[15] Rokhinson L P, Liu X and Furdyna J K 2012 Nat. Phys. 8 795
[16] Alicea J, Oreg Y, Refael G, von Oppen F and Fisher M P A 2011 Nat. Phys. 7 412
[17] Bonderson P, Kitaev A and Shtengel K 2006 Phys. Rev. Lett. 96 016803
[18] Fu L and Kane C L 2009 Phys. Rev. B 79 161408
[19] Beenakker C W J 2013 Ann. Rev. Condens. Matter Phys. 4 113
[20] Jiang L, Kane C L and Preskill J 2011 Phys. Rev. Lett. 106 130504
[21] Leijnse M and Flensberg K 2011 Phys. Rev. Lett. 107 210502
[22] Hassler F, Akhmerov A R, Hou C Y and Beenakker C W J 2010 New J. Phys. 12 125002
[23] Flensberg K 2011 Phys. Rev. Lett. 106 090503
[24] Bravyi S 2006 Phys. Rev. A 73 042313
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[4] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[5] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[6] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[7] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[8] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[9] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[10] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[11] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[12] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[13] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[14] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[15] Majorana fermions induced fast- and slow-light in a hybrid semiconducting nanowire/superconductor device
Hua-Jun Chen(陈华俊), Peng-Jie Zhu(朱鹏杰), Yong-Lei Chen(陈咏雷), and Bao-Cheng Hou(侯宝成). Chin. Phys. B, 2022, 31(2): 027802.
No Suggested Reading articles found!