Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 037701    DOI: 10.1088/1674-1056/23/3/037701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of heating treatment on trap level distribution in polyamide 66 film electrets

Xu Pei (徐佩)a b, Zhang Xing-Yuan (张兴元)a
a Chinese Academy of Sciences (CAS) Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China;
b School of Chemical Engineering, Hefei University of Technology, Hefei 230009, China
Abstract  The effect of heating treatment on the trap level distribution in polyamide 66 film electret is studied by thermally stimulated depolarization current (TSDC) technique. For annealed polyamide 66, there are three trap levels that respectively originate from space charge trapped in amorphous phase, interphase and crystalline phase. There is one peak that originates from space charge trapped in amorphous phase for quenched one. Using multi-point method to fit the experimental curves, the detrapping current peaks can be separated and the trap depth is obtained. The shallower trap levels trapped in amorphous phase and interphase are obviously close to the deeper trap level trapped in crystalline phase for annealed polyamide 66 as the polarization temperature increases, while the trap level distribution remains unaffected by polarization temperature for quenched one.
Keywords:  polyamide 66      film electret      thermally stimulated depolarization current      heating treatment  
Received:  21 May 2013      Revised:  18 July 2013      Accepted manuscript online: 
PACS:  77.22.-d (Dielectric properties of solids and liquids)  
  73.50.Gr (Charge carriers: generation, recombination, lifetime, trapping, mean free paths)  
  73.61.Ph (Polymers; organic compounds)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 20974108), the Natural Science Foundation of Anhui Province, China (Grant No. 1308085QB40), the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. 2013HGQC0016 and 2011HGBZ1323).
Corresponding Authors:  Zhang Xing-Yuan     E-mail:  zxym@ustc.edu.cn

Cite this article: 

Xu Pei (徐佩), Zhang Xing-Yuan (张兴元) Effect of heating treatment on trap level distribution in polyamide 66 film electrets 2014 Chin. Phys. B 23 037701

[1] Sessler G M 1980 Eletrcet (Berlin: Spinger-Verlag)
[2] Jiang H Y, Ren Y K and Tao Y 2011 Chin. Phys. B 20 057701
[3] Bucci C, Fieschi R and Guidi G 1966 Phys. Rev. 148 816
[4] Mudarra M, Joumha A, Belana J and Toureille A 1999 Polymer 40 6977
[5] Xu P and Zhang X Y 2011 Radiat. Phys. Chem. 80 842
[6] Neagu E R and Neagu R 2002 J. Phys. D: Appl. Phys. 35 2298
[7] Laredo E and Hernandez M C 1997 J. Polym. Sci. Polym. Phys. 35 2879
[8] Jun Z, Zhang X Y and Lu H B 2005 Acta. Phys. Sin. 54 3414 (in Chinese)
[9] Magill J H, Girolamo M and Keller A 1981 Polymer 22 43
[10] Khanna Y P, Mum N S and Kuhn W P 1999 Polym. Eng. Sci. 39 2222
[11] Gil-Zambrano J L and Juhasz C 1989 IEEE Trans. Dielect. El. In. 24 635
[12] Cooper S J, Atkins E D T and Hill M J 1998 Macromolecules 31 8947
[13] Murthy N S, Curran S A, Aharoni S M and Minor H 1991 Macromolecules 24 3215
[14] Menczel J D and Prime R B 2009 Thermal Analysis of Polymers, Fundamentals and Applications (1st edn.) (Hoboken, NJ: Wiley) p. 497
[15] Neagu E R 2003 Thermochim. Acta 402 37
[16] Tamayo I, Belana J, Canadas J C, Mudarra M, Diego J A and Sellares J T 2003 J. Polym. Sci. Polym. Phys. 41 1412
[1] Surface passivation in n-type silicon and its application insilicon drift detector
Yiqing Wu(吴怡清), Ke Tao(陶科), Shuai Jiang(姜帅), Rui Jia(贾锐), Ye Huang(黄也). Chin. Phys. B, 2020, 29(3): 037702.
[2] Optical-induced dielectric tunability properties of DAST crystal in THz range
De-Gang Xu(徐德刚), Xian-Li Zhu(朱先立), Yu-Ye Wang(王与烨), Ji-Ning Li(李吉宁), Yi-Xin He(贺奕俽), Zi-Bo Pang(庞子博), Hong-Juan Cheng(程红娟), Jian-Quan Yao(姚建铨). Chin. Phys. B, 2019, 28(12): 127701.
[3] Enhanced dielectric and optical properties of nanoscale barium hexaferrites for optoelectronics and high frequency application
J Mohammed, A B Suleiman, Tchouank Tekou Carol T, H Y Hafeez, Jyoti Sharma, Pradip K Maji, Sachin Godara Kumar, A K Srivastava. Chin. Phys. B, 2018, 27(12): 128104.
[4] Modeling for multi-resonant behavior of broadband metamaterial absorber with geometrical substrate
Kai-Lun Zhang(张凯伦), Zhi-Ling Hou(侯志灵), Song Bi(毕松), Hui-Min Fang(房惠敏). Chin. Phys. B, 2017, 26(12): 127802.
[5] Single-layer broadband planar antenna using ultrathin high-efficiency focusing metasurfaces
Hai-Sheng Hou(侯海生), Guang-Ming Wang(王光明), Hai-Peng Li(李海鹏), Wen-Long Guo(郭文龙), Tang-jing Li(李唐景), Tong Cai(蔡通). Chin. Phys. B, 2017, 26(5): 057701.
[6] Study on the dielectric properties of Mg-doped NaBiTi6O14 ceramics
Yong Chen(陈勇), Simin Xue(薛思敏), Qian Luo(骆迁), Huyin Su(苏虎音), Qi Chen(陈琪), Zhen Huang(黄镇), Linfang Xu(徐玲芳), Wanqiang Cao(曹万强), Zhaoxiang Huang(黄兆祥). Chin. Phys. B, 2017, 26(4): 047701.
[7] CuO added Pb0.92Sr0.06Ba0.02(Mg1/3Nb2/3)0.25(Ti0.53Zr0.47)0.75O3 ceramics sintered with Ag electrodes at 900℃ for multilayer piezoelectric actuator
Muhammad Adnan Qaiser, Ahmad Hussain, Yuqing Xu(徐玉青), Yaojin Wang(汪尧进), Yiping Wang(王一平), Ying Yang(杨颖), Guoliang Yuan(袁国亮). Chin. Phys. B, 2017, 26(3): 037702.
[8] Dielectric and piezoelectric properties of (110) oriented Pb(Zr1-xTix)O3 thin films
Jian-Hua Qiu(邱建华), Zhi-Hui Chen(陈智慧), Xiu-Qin Wang(王秀琴), Ning-Yi Yuan(袁宁一), Jian-Ning Ding(丁建宁). Chin. Phys. B, 2016, 25(5): 057701.
[9] Al-doping-induced magnetocapacitance in the multiferroic AgCrS2
Liu Rong-Deng (刘荣灯), He Lun-Hua (何伦华), Yan Li-Qin (闫丽琴), Wang Zhi-Cui (王志翠), Sun Yang (孙阳), Liu Yun-Tao (刘蕴韬), Chen Dong-Feng (陈东风), Zhang Sen (张森), Zhao Yong-Gang (赵永刚), Wang Fang-Wei (王芳卫). Chin. Phys. B, 2015, 24(12): 127507.
[10] The interface density dependence of the electrical properties of 0.9Pb(Sc0.5Ta0.5)O3-0.1PbTiO3/0.55Pb(Sc0.5Ta0.5)O3-0.45PbTiO3 multilayer thin films
Li Xue-Dong (李雪冬), Liu Hong (刘洪), Wu Jia-Gang (吴家刚), Liu Gang (刘刚), Xiao Ding-Quan (肖定全), Zhu Jian-Guo (朱建国). Chin. Phys. B, 2015, 24(10): 107701.
[11] Piezoelectric and electro—optic properties of tetragonal (1-x)Pb(Mg1/3Nb2/3)O3xPbTiO3 single crystals by phenomenological theory
Qiu Jian-Hua (邱建华), Wang Xiu-Qin (王秀琴), Yuan Ning-Yi (袁宁一), Ding Jian-Ning (丁建宁). Chin. Phys. B, 2015, 24(7): 077701.
[12] Dielectric and ferroelectric properties of Sr4CaSmTi3Nb7O30 with tetragonal tungsten bronze structure
Gong Gao-Shang (龚高尚), Fang Yu-Jiao (方玉娇), Huang Shuai (黄帅), Yin Chong-Yang (尹重阳), Yuan Song-Liu (袁松柳), Wang Li-Guang (王丽光). Chin. Phys. B, 2014, 23(9): 097701.
[13] Multiferroic properties in terbium orthoferrite
Song Yu-Quan (宋育全), Zhou Wei-Ping (周卫平), Fang Yong (房勇), Yang Yan-Ting (杨艳婷), Wang Liao-Yu (王辽宇), Wang Dun-Hui (王敦辉), Du You-Wei (都有为). Chin. Phys. B, 2014, 23(7): 077505.
[14] Electronic and magnetic properties of BiFeO3 with intrinsic defects:First-principles prediction
Yang Rui-Peng (杨瑞鹏), Lin Si-Xian (林思贤), Fang Xiao-Gong (方潇功), Qin Ming-Hui (秦明辉), Gao Xing-Sen (高兴森), Zeng Min (曾敏), Liu Jun-Ming (刘俊明). Chin. Phys. B, 2014, 23(6): 067102.
[15] Lowering plasma frequency by enhancing the effective mass of electrons:A route to deep sub-wavelength metamaterials
Qin Gang (秦刚), Wang Jia-Fu (王甲富), Yan Ming-Bao (闫明宝), Chen Wei (陈维), Chen Hong-Ya (陈红雅), Li Yong-Feng (李勇峰). Chin. Phys. B, 2013, 22(8): 087302.
No Suggested Reading articles found!