Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 030301    DOI: 10.1088/1674-1056/23/3/030301
GENERAL Prev   Next  

Dissipative preparation of a steady three-dimensional entangled state via quantum-jump-based feedback

Chen Li (陈丽)a, Wang Hong-Fu (王洪福)b, Zhang Shou (张寿)a b
a Center for the Condensed-Matter Science and Technology, Department of Physics, Harbin Institute of Technology, Harbin 150001, China;
b Department of Physics, College of Science, Yanbian University, Yanji 133002, China
Abstract  A robust and scalable scheme to generate a steady three-dimensional entangled state for a V-type atom and a Λ-type atom trapped in a strongly dissipative bimodal cavity is proposed by direct feedback control based on quantum-jump detection. The robustness of this scheme reflects in the insensitivity to detection inefficiencies and the strong ability against the parameter fluctuations in the feedback, driving, and coupling strengths. The influence of atomic spontaneous emission can be suppressed by using the local feedback control. The scalability is ensured that N-dimensional entangled states of two atoms can be deterministically generated.
Keywords:  three-dimensional entangled state      quantum jump      feedback control  
Received:  25 April 2013      Revised:  16 July 2013      Accepted manuscript online: 
PACS:  03.67.Bg (Entanglement production and manipulation)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61068001 and 11264042), the Postdoctoral Science Foundation of China (Grant No. 2012M520612), and the Talent Program of Yanbian University of China (Grant No. 950010001).
Corresponding Authors:  Zhang Shou     E-mail:  szhang@ybu.edu.cn

Cite this article: 

Chen Li (陈丽), Wang Hong-Fu (王洪福), Zhang Shou (张寿) Dissipative preparation of a steady three-dimensional entangled state via quantum-jump-based feedback 2014 Chin. Phys. B 23 030301

[1] Plenio M B, Huelga S F, Beige A and Knight P L 1999 Phys. Rev. A 59 2468
[2] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
[3] Nelson R J, Cory D G and Lloyd S 2000 Phys. Rev. A 61 022106
[4] Leibfried D, Knill E, Seidelin S, Britton J, Blakestad R B, Chiaverini J, Hume D B, Itano W M, Jost J D, Langer C, Ozeri R, Reichle R and Wineland D J 2005 Nature 438 639
[5] Zhong Z R 2010 Chin. Phys. Lett. 27 100305
[6] Xu Y, Fan W, Chen B and Li Z X 2011 Acta Phys. Sin. 60 060305 (in Chinese)
[7] Kaszlikowski D, Gnacinski P, Zukowski M, Miklaszewski W and Zeilinger A 2000 Phys. Rev. Lett. 85 4418
[8] Cerf N J, Massar S and Pironio S 2002 Phys. Rev. Lett. 89 080402
[9] Bourennane M, Karlsson A and Björk G 2001 Phys. Rev. A 64 012306
[10] Bruß D and Macchiavello C 2002 Phys. Rev. Lett. 88 127901
[11] Mair A, Vaziri A, Weihs G and Zeilinger A 2001 Nature 412 313
[12] Vaziri A, Weihs G and Zeilinger A 2002 Phys. Rev. Lett. 89 240401
[13] Dada A C, Leach J, Buller G S, Padgett M J and Andersson E 2011 Nat. Phys. 7 677
[14] Zou X B, Pahlke K and Mathis W 2003 Phys. Rev. A 67 044301
[15] Zheng S B 2003 Phys. Rev. A 68 035801
[16] Lü X Y, Liu J B, Ding C L and Li J H 2008 Phys. Rev. A 78 032305
[17] Lin X M, Zhou Z W, Wu Y C, Wang C Z and Guo G C 2005 Chin. Phys. Lett. 22 1318
[18] Zheng S B 2005 Chin. Phys. Lett. 22 3064
[19] Chen L B, Shi P, Zheng C H and Gu Y J 2012 Opt. Express 20 14547
[20] Ye S Y, Zhong Z R and Zheng S B 2008 Phys. Rev. A 77 014303
[21] Wu X, Chen Z H, Ye M Y, Chen Y H and Lin X M 2013 Chin. Phys. B 22 040309
[22] Ma S S, Chen M F and Jiang X P 2011 Chin. Phys. B 20 120308
[23] Lu M, Xia Y, Song J and Song H S 2013 J. Phys. B 46 015502
[24] Li W A and Huang G Y 2011 Phys. Rev. A 83 022322
[25] Shen L T, Wu H Z and Chen R X 2011 J. Phys. B 44 205503
[26] Geremia J M, Stockton J K and Mabuchi H 2004 Science 304 270
[27] Reiner J E, Smith W P, Orozco L A, Wiseman H M and Gambetta J 2004 Phys. Rev. A 70 023819
[28] Morrow N V, Dutta S K and Raithel G 2002 Phys. Rev. Lett. 88 093003
[29] Bushev P, Rotter D, Wilson A, Dubin F, Becher C, Eschner J, Blatt R, Steixner V, Rabl P and Zoller P 2006 Phys. Rev. Lett. 96 043003
[30] Belavkin V P 1999 Rep. Math. Phys. 43 A405
[31] Wiseman H M and Milburn G J 1993 Phys. Rev. Lett. 70 548
[32] Wiseman H M 1994 Phys. Rev. A 49 2133
[33] Doherty A C and Jacobs K 1999 Phys. Rev. A 60 2700
[34] Carvalho A R R and Hope J J 2007 Phys. Rev. A 76 010301
[35] Song J, Xia Y, Sun X D and Song H S 2012 Phys. Rev. A 86 034303
[36] Stevenson R N, Hope J J and Carvalho A R R 2011 Phys. Rev. A 84 022332
[37] Carvalho A R R, Reid A J S and Hope J J 2008 Phys. Rev. A 78 012334
[38] Wang J, Wiseman H M and Milburn G J 2005 Phys. Rev. A 71 042309
[39] Shao X Q, Zheng T Y and Zhang S 2012 Phys. Rev. A 85 042308
[40] Wiseman H M and Milburn G J 1993 Phys. Rev. A 47 642
[41] Schirmer S G and Wang X 2010 Phys. Rev. A 81 062306
[42] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[43] Kubanek A, Koch M, Sames C, Ourjoumtsev A, Pinkse P W H, Murr K and Rempe G 2009 Nature 462 898
[44] Metz J and Beige A 2007 Phys. Rev. A 76 022331
[45] Dayan B, Parkins A S, Aoki T, Ostby E P, Vahala K J and Kimble H J 2008 Science 319 1062
[1] Feedback control and quantum error correction assisted quantum multi-parameter estimation
Hai-Yuan Hong(洪海源), Xiu-Juan Lu(鲁秀娟), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(4): 040603.
[2] Influence of homodyne-based feedback control on the entropic uncertainty in open quantum system
Juju Hu(胡菊菊), Qin Xue(薛琴). Chin. Phys. B, 2019, 28(7): 070303.
[3] H couple-group consensus of stochastic multi-agent systems with fixed and Markovian switching communication topologies
Muyun Fang(方木云), Cancan Zhou(周灿灿), Xin Huang(黄鑫), Xiao Li(李晓), Jianping Zhou(周建平). Chin. Phys. B, 2019, 28(1): 010703.
[4] Coordinated chaos control of urban expressway based on synchronization of complex networks
Ming-bao Pang(庞明宝), Yu-man Huang(黄玉满). Chin. Phys. B, 2018, 27(11): 118902.
[5] Quantum speed limit time of a two-level atom under different quantum feedback control
Min Yu(余敏), Mao-Fa Fang(方卯发), Hong-Mei Zou(邹红梅). Chin. Phys. B, 2018, 27(1): 010303.
[6] Successive lag synchronization on dynamical networks with communication delay
Xin-Jian Zhang(张新建), Ai-Ju Wei(韦爱举), Ke-Zan Li(李科赞). Chin. Phys. B, 2016, 25(3): 038901.
[7] A control method applied to mixed traffic flow for the coupled-map car-following model
Cheng Rong-Jun (程荣军), Han Xiang-Lin (韩祥临), Lo Siu-Ming (卢兆明), Ge Hong-Xia (葛红霞). Chin. Phys. B, 2014, 23(3): 030507.
[8] Teleportation of three-dimensional single particle state in noninertial frames
Wu Qi-Cheng (吴奇成), Wen Jing-Ji (文晶姬), Ji Xin (计新), Yeon Kyu-Hwang. Chin. Phys. B, 2014, 23(2): 020303.
[9] An improved car-following model with consideration of the lateral effect and its feedback control research
Zheng Ya-Zhou (郑亚周), Zheng Peng-Jun (郑彭军), Ge Hong-Xia (葛红霞). Chin. Phys. B, 2014, 23(2): 020503.
[10] Feedback control of wave segments in excitable medium
Wu Ning-Jie (吴宁杰), Gao Hong-Jun (高洪俊), Ying He-Ping (应和平). Chin. Phys. B, 2013, 22(5): 050501.
[11] Chaotic dynamic behavior analysis and control for a financial risk system
Zhang Xiao-Dan (张晓丹), Liu Xiang-Dong (刘祥东), Zheng Yuan (郑媛), Liu Cheng (刘澄). Chin. Phys. B, 2013, 22(3): 030509.
[12] Feedback control and synchronization of Mandelbrot sets
Zhang Yong-Ping (张永平). Chin. Phys. B, 2013, 22(1): 010502.
[13] Pinning synchronization of time-varying delay coupled complex networks with time-varying delayed dynamical nodes
Wang Shu-Guo(王树国) and Yao Hong-Xing(姚洪兴) . Chin. Phys. B, 2012, 21(5): 050508.
[14] Bifurcations and chaos control in discrete small-world networks
Li Ning(李宁), Sun Hai-Yi(孙海义), and Zhang Qing-Ling(张庆灵) . Chin. Phys. B, 2012, 21(1): 010503.
[15] Modified coupled map car-following model and its delayed feedback control scheme
Ge Hong-Xia(葛红霞) . Chin. Phys. B, 2011, 20(9): 090502.
No Suggested Reading articles found!