Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 024205    DOI: 10.1088/1674-1056/23/2/024205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Spectroscopic properties and mechanism of Tm3+/Er3+/Yb3+ co-doped oxyfluorogermanate glass ceramics containing BaF2 nanocrystals

Hu Yue-Bo (胡曰博)a, Qiu Jian-Bei (邱建备)b, Zhou Da-Cheng (周大成)b, Song Zhi-Guo (宋志国)b, Yang Zheng-Wen (杨正文)b, Wang Rong-Fei (王荣飞)b, Jiao Qing (焦清)b, Zhou Da-Li (周大利)c
a Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China;
b Key Laboratory of Advanced Materials in Rare & Precious and Non-ferrous Metals, Ministry of Education, Key Laboratory of Advanced Materials of Yunnan Province, Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China;
c College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
Abstract  Transparent Tm3+/Er3+/Yb3+ co-doped oxyfluorogermanate glass ceramics containing BaF2 nanocrystals are prepared. Under excitation of a 980-nm laser diode (LD), compared with the glass before heat treatment, the Tm3+/Er3+/Yb3+ co-doped oxyfluorogermanate glass ceramics can emit intense blue, green and red up-conversion luminescence and Stark-split peaks; X-ray diffraction (XRD) and transmission electron microscope (TEM) results show that BaF2 nanocrystals with an average diameter of 20 nm are precipitated from the glass matrix. Stark splitting of the up-conversion luminescence peaks in the glass ceramics indicates that Tm3+, Er3+ and (or) Yb3+ ions are incorporated into the BaF2 nanocrystals. The up-conversion luminescence intensities of Tm3+, Er3+ and the splitting degree of luminescence peaks in the glass ceramics increase significantly with the increase of heat treat temperature and heat treat time extension. In addition, the possible energy transfer process between rare earth ions and the up-conversion luminescence mechanism are also proposed.
Keywords:  up-conversion luminescence      oxyfluorogermanate glass ceramic      Tm3+/Er3+/Yb3+ co-doped      energy transfer  
Received:  08 April 2013      Revised:  27 April 2013      Accepted manuscript online: 
PACS:  42.70.-a (Optical materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61265004 and 51272097) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20125314120018).
Corresponding Authors:  Qiu Jian-Bei     E-mail:  qiu@kmust.edu.cn
About author:  42.70.-a

Cite this article: 

Hu Yue-Bo (胡曰博), Qiu Jian-Bei (邱建备), Zhou Da-Cheng (周大成), Song Zhi-Guo (宋志国), Yang Zheng-Wen (杨正文), Wang Rong-Fei (王荣飞), Jiao Qing (焦清), Zhou Da-Li (周大利) Spectroscopic properties and mechanism of Tm3+/Er3+/Yb3+ co-doped oxyfluorogermanate glass ceramics containing BaF2 nanocrystals 2014 Chin. Phys. B 23 024205

[1] Li X P, Chen B J, Shen R S, Zhang J S, Sun J S, Cheng L H, Zhong H Y, Tian Y, Fu S B and Du G T 2013 Chin. Phys. B 22 023202
[2] Hu Y B, Zhang X N, Zhou D L, Jiao Q, Wang R F, Huang J F, Long X B and Qiu J B 2012 Spectroscopy and Spectral Analysis 32 56 (in Chinese)
[3] Zheng T, Qin J M, Jiang D Y, Lu J W and Xiao S C 2012 Chin. Phys. B 21 043302
[4] Li C R, Li S F, Dong B, Cheng Y Q, Yin H T, Yang J and Chen Y 2011 Chin. Phys. B 20 017803
[5] Hu Y B, Qiu J B, Zhou D L, Song Z G and Yang Z W 2011 J. Wuhan University of Technology: Mater. Sci. Ed. 26 393
[6] Hu Y B, Qiu J B, Zhou D L, Yang Z W and Song Z G 2010 J. Inorg. Mater. 25 551
[7] Chivian J S, Case W E and Eden D D 1979 Appl. Phys. Lett. 35 124
[8] Dai S X and Zhang J J 2004 Chin. Phys. 13 1156
[9] Dominiak-Dzik G, Lisiecki R, Ryba-Romanowski W and Krajczyk L 2012 J. Alloys Compd. 511 189
[10] Prituzhalov V A, Ardashnikova E I, Vinogradov A A, Dolgikh V A, Videau J J, Fargin E, Abakumov A M, Tarakina N V and Tendeloo G V 2011 J. Fluorin. Chem. 132 1110
[11] Zhao S L, Xu S Q, Jia G H, Deng D G, Huang L H and Wang H P 2011 Mater. Lett. 65 2407
[12] Yu Y L, Chen D Q, Ma E, Wang Y S and Hu Z J 2007 Spectrochim. Acta, Part A 67 709
[13] Xu W, Li C R, Cao B S and Dong B 2010 Chin. Phys. B 19 127804
[14] Wang Y H and Ohwaki 1993 J. Appl. Phys. Lett. 63 3268
[15] Meng J, Zhao L J, Yu H, Tang L Q, Liang Q, Yu X Y, Tang B Q, Su J and Xu J J 2005 Acta Phys. Sin. 54 1442 (in Chinese)
[16] Qiao X S, Fan X P, Wang J and Wang M Q 2005 J. Non-Cryst. Solids 351 357
[17] Qiao X S, Fan X P, Wang J and Wang M Q 2006 J. Appl. Phys. 99 074302
[18] Qiao X S, Fan X P, Wang M Q and Wang J 2006 Scr. Mater. 55 211
[19] Pan Z, Ueda A, Mu R and Morgan S H 2007 J. Lumin. 126 251
[20] Gouveia-Neto A S, Costa E B, Bueno L A and Ribeiro S J L 2004 J. Lumin. 110 79
[21] Zhao G L, Xi H D, Li X M, Wang J X and Han G R 2011 J. Non-Cryst. Solids 357 2332
[22] Xiao Z H and Wang S L 2011 Mater. Sci. Forum 663–665 1285
[23] Klimesz B, Dominiak-Dzik G, Żelechower M and Ryba-Romanowski W 2008 Opt. Mater. 30 1587
[24] Kaminskii A A 1996 A Laser Crystals: Their Physics and Properties, 4th edn. (New York: Springer) p. 3
[25] Qiu J B, Kawamoto Y and Zhang J J 2002 J. Appl. Phys. 92 5163
[26] Qiao X S, Fan X P, Wang M Q and Zhang X H 2008 J. Non-Cryst. Solids 354 3273
[27] Tick P A 1998 Opt. Lett. 23 1904
[28] Weber M J 1968 Phys. Rev. 171 283
[29] Reisfeld R, Boehm L, Eckstein Y and Lieblich N 1975 J. Lumin. 10 193
[30] Pollack S A and Chang D B 1988 J. Appl. Phys. 64 2885
[31] Shen J K, Wu X L, Bao X M, Yuan R K, Zou J P and Tan C 2000 Phys. Lett. A 273 208
[32] Suyver J F, Aebischer A, Garcia-Revilla S, Gerner P and Gudel H U 2005 Phys. Rev. B 71 125123
[33] Xu S Q, Ma H P and Fang D W 2005 Mater. Lett. 59 3066
[34] Tikhomirov V K, Driesen K, Görller-Walrand C and Mortier M 2008 Mater. Sci. Eng. B 146 66
[35] Yan D, Zhu J L, Wu H J, Yang Z W, Qiu J B, Song Z G, Yu X, Yang Y, Zhou D C, Yin Z Y and Wang R F 2012 J. Mater. Chem. 22 18558
[36] Lahoz F, Shepherd D P, Wilkinson J S and Hassan M A 2008 Opt. Commun. 281 3691
[37] Chung W J and Heo J 2001 J. Am. Ceram. Soc. 84 348
[1] How graph features decipher the soot assisted pigmental energy transport in leaves? A laser-assisted thermal lens study in nanobiophotonics
S Sankararaman. Chin. Phys. B, 2022, 31(8): 088201.
[2] Luminescent characteristics of Tm3+/Tb3+/Eu3+ tri-doped Na5Y9F32 single crystals for white emission with high thermal stability
Lizhi Fang(方立志), Xiong Zhou(周雄), Zhiwei Zhao(赵志伟), Biao Zheng(郑标), Haiping Xia(夏海平), Jun Wang(王军), Hongwei Song(宋宏伟), and Baojiu Chen(陈宝玖). Chin. Phys. B, 2022, 31(12): 127802.
[3] Investigation of fluorescence resonance energy transfer ultrafast dynamics in electrostatically repulsed and attracted exciton-plasmon systems
Hong-Yu Tu(屠宏宇), Ji-Chao Cheng(程基超), Gen-Cai Pan(潘根才), Lu Han(韩露), Bin Duan(段彬), Hai-Yu Wang(王海宇), Qi-Dai Chen(陈岐岱), Shu-Ping Xu(徐抒平), Zhen-Wen Dai(戴振文), and Ling-Yun Pan(潘凌云). Chin. Phys. B, 2021, 30(2): 027802.
[4] Tuning energy transfer efficiency in quantum dots mixture by controling donor/acceptor ratio
Chang Liu(刘畅), Jing Liang(梁晶), Fangfang Wang(王芳芳), Chaojie Ma(马超杰), Kehai Liu(刘科海), Can Liu(刘灿), Hao Hong(洪浩), Huaibin Shen(申怀彬), Kaihui Liu(刘开辉), and Enge Wang(王恩哥). Chin. Phys. B, 2021, 30(12): 127802.
[5] The effects of Er 3 + ion concentration on 2.0-μ m emission performance in Ho 3 + /Tm 3 + co-doped Na 5Y 9F32 single crystal under 800-nm excitation
Benli Ding(丁本利), Xiong Zhou(周雄), Jianli Zhang(章践立), Haiping Xia(夏海平), Hongwei Song(宋宏伟), and Baojiu Chen(陈宝玖). Chin. Phys. B, 2021, 30(1): 017801.
[6] Energy transfer, luminescence properties, and thermal stability of color tunable barium pyrophosphate phosphors
Meng-Jiao Xu(徐梦姣), Su-Xia Li(李素霞), Chen-Chen Ji(季辰辰), Wan-Xia Luo(雒晚霞), Lu-Xiang Wang(王鲁香). Chin. Phys. B, 2020, 29(6): 063301.
[7] Up-conversion luminescence tuning in Er3+-doped ceramic glass by femtosecond laser pulse at different laser powers
Wen-Jing Cheng(程文静), Guo Liang(梁果), Ping Wu(吴萍), Shi-Hua Zhao(赵世华), Tian-Qing Jia(贾天卿), Zhen-Rong Sun(孙真荣), Shi-An Zhang(张诗按). Chin. Phys. B, 2018, 27(12): 123201.
[8] Substitution priority of Eu2+ in multi-cation compound Sr0.8Ca0.2Al2Si2O8 and energy transfer
Zhi-Ping Yang(杨志平), Zhen-Ling Li(李振玲), Zhi-Jun Wang(王志军), Pan-Lai Li(李盼来), Miao-Miao Tian(田苗苗), Jin-Ge Cheng(程金阁), Chao Wang(王超). Chin. Phys. B, 2018, 27(1): 017802.
[9] Vibration-assisted coherent excitation energy transfer in a detuned dimer
Xin Wang(王信), Hao Chen(陈浩), Chen-yu Li(李晨宇), Hong-rong Li(李宏荣). Chin. Phys. B, 2017, 26(3): 037105.
[10] Phonon-assisted excitation energy transfer in photosynthetic systems
Hao Chen(陈浩), Xin Wang(王信), Ai-Ping Fang(方爱平), Hong-Rong Li(李宏荣). Chin. Phys. B, 2016, 25(9): 098201.
[11] Up-conversion luminescence polarization control in Er3+-doped NaYF4 nanocrystals
Hui Zhang(张晖), Yun-Hua Yao(姚云华), Shi-An Zhang(张诗按), Chen-Hui Lu(卢晨晖), Zhen-Rong Sun(孙真荣). Chin. Phys. B, 2016, 25(2): 023201.
[12] 2.0-μm emission and energy transfer of Ho3+/Yb3+ co-doped LiYF4 single crystal excited by 980 nm
Yang Shuo (杨硕), Xia Hai-Ping (夏海平), Jiang Yong-Zhang (姜永章), Zhang Jia-Zhong (张加忠), Jiang Dong-Sheng (江东升), Wang Cheng (王成), Feng Zhi-Gang (冯治刚), Zhang Jian (张健), Gu Xue-Mei (谷雪梅), Zhang Jian-Li (章践立), Jiang Hao-Chuan (江浩川), Chen Bao-Jiu (陈宝玖). Chin. Phys. B, 2015, 24(6): 067802.
[13] Energy transfer ultraviolet photodetector with 8-hydroxyquinoline derivative-metal complexes as acceptors
Wu Shuang-Hong (吴双红), Li Wen-Lian (李文连), Chen Zhi (陈志), Li Shi-Bin (李世彬), Wang Xiao-Hui (王晓晖), Wei Xiong-Bang (魏雄邦). Chin. Phys. B, 2015, 24(2): 028505.
[14] Concentration effect of the near-infrared quantum cutting of 1788-nm luminescence of Tm3+ ion in (Y1-xTmx)3Al5O12 powder phosphor
Chen Xiao-Bo (陈晓波), Li Song (李崧), Ding Xian-Lin (丁贤林), Yang Xiao-Dong (杨小冬), Liu Quan-Lin (刘泉林), Gao Yan (高燕), Sun Ping (孙萍), Yang Guo-Jian (杨国建). Chin. Phys. B, 2014, 23(8): 087809.
[15] Photoluminescence properties and energy transfer in Y2O3:Eu3+ nanophosphors
Cui Hang (崔航), Zhu Pei-Fen (朱培芬), Zhu Hong-Yang (祝洪洋), Li Hong-Dong (李红东), Cui Qi-Liang (崔啟良). Chin. Phys. B, 2014, 23(5): 057801.
No Suggested Reading articles found!