Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 026601    DOI: 10.1088/1674-1056/23/2/026601
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Subcooled pool boiling heat transfer in fractal nanofluids:A novel analytical model

Xiao Bo-Qi (肖波齐)a b c, Yang Yi (杨毅)d, Xu Xiao-Fu (许晓赋)a
a School of Mechanical and Electrical Engineering, Sanming University, Sanming 365004, China;
b Sanming Engineering Research Center of Mechanical CAD, Sanming 365000, China;
c Institute of Textiles and Clothing, Hong Kong Polytechnic University, Kowloon, Hong Kong, China;
d Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong, China
Abstract  A novel analytical model to determine the heat flux of subcooled pool boiling in fractal nanofluids is developed. The model considers the fractal character of nanofluids in terms of the fractal dimension of nanoparticles and the fractal dimension of active cavities on the heated surfaces; it also takes into account the effect of the Brownian motion of nanoparticles, which has no empirical constant but has parameters with physical meanings. The proposed model is expressed as a function of the subcooling of fluids and the wall superheat. The fractal analytical model is verified by a reasonable agreement with the experimental data and the results obtained from existing models.
Keywords:  subcooled pool boiling      Brownian motion      fractal nanofluids  
Received:  20 May 2013      Revised:  03 July 2013      Accepted manuscript online: 
PACS:  66.25.+g (Thermal conduction in nonmetallic liquids)  
  05.45.Df (Fractals)  
  44.05.+e (Analytical and numerical techniques)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11102100), the Natural Science Foundation of Fujian Province, China (Grant No. 2012J01017), and the Scientific Research Special Foundation for Provincial University of Education Department of Fujian Province, China (Grant No. JK2011056).
Corresponding Authors:  Xiao Bo-Qi     E-mail:  mr.boqi-xiao@connect.polyu.hk
About author:  66.25.+g; 05.45.Df; 44.05.+e

Cite this article: 

Xiao Bo-Qi (肖波齐), Yang Yi (杨毅), Xu Xiao-Fu (许晓赋) Subcooled pool boiling heat transfer in fractal nanofluids:A novel analytical model 2014 Chin. Phys. B 23 026601

[1] Hong K S, Hong T K and Yang H S 2006 Appl. Phys. Lett. 88 031901
[2] Xiao B Q, Yu B M, Wang Z C and Chen L X 2009 Phys. Lett. A 373 4178
[3] Yang L, Du K, Ding Y H, Cheng B and Li Y J 2012 Powder Technol. 215–216 210
[4] Zhou X F and Gao L 2007 Chin. Phys. 16 2028
[5] Xiao B Q 2013 Chin. Phys. B 22 014402
[6] Katz A J and Thompson A H 1985 Phys. Rev. Lett. 54 1325
[7] Feng Y J, Yu B M, Zou M Q and Zhang D M 2004 J. Phys. D: Appl. Phys. 37 3030
[8] Cai J C, Yu B M, Zou M Q and Luo L 2010 Energy Fuels 24 1860
[9] Cai J C, Yu B M, Zou M Q and Mei M F 2010 Chem. Eng. Sci. 65 5178
[10] Xiao B Q, Yang Y and Chen L X 2013 Powder Technol. 239 409
[11] Xiao B Q, Jiang G P and Chen L X 2010 Sci. China Ser. G: Phys. Mech. Astron. 53 30
[12] Yu B M and Cheng P 2002 Int. J. Heat Mass Transfer 45 2983
[13] Cai J C and Sun S Y 2013 Int. J. Mod. Phys. C 24 1350056
[14] Prasher R S, Bhattacharya P and Phelan P E 2005 J. Heat Transfer 128 588
[15] Yang L, Du K, Niu X F, Li Y J and Zhang Y 2011 Int. J. Refrig. 34 1741
[16] Yang L and Du K 2012 Int. J. Refrig. 35 1978
[17] Zhou D W 2004 Int. J. Heat Mass Transfer 47 3109
[18] Zhou D W and Liu D Y 2004 Heat Transfer Eng. 25 54
[19] Yu W, Xie H Q, Chen L F and Li Y 2010 Powder Technol. 197 218
[20] Chen L F, Yu W and Xie H Q 2012 Powder Technol. 231 18
[21] Jang S P and Choi S U S 2004 Appl. Phys. Lett. 84 4316
[22] Feng Y J, Yu B M, Feng K M, Xu P and Zou M Q 2008 J. Nanopart. Res. 10 1319
[23] Prasher R, Bhattacharya P and Phelan P E 2005 Phys. Rev. Lett. 94 025901
[24] Acrivos A and Taylor T D 1962 Phys. Fluids 5 387
[25] Forster K and Greif R 1959 J. Heat Transfer 81 43
[26] Lin R T 1988 Boiling Heat Transfer (Beijing: Science Press) p. 130
[27] Yu B M and Cheng P 2002 J. Heat Transfer 124 1117
[28] Xiao B Q and Yu B M 2007 Int. J. Multiphase Flow 33 1126
[29] Van der Geld C W M 1996 Int. J. Heat Mass Transfer 39 653
[30] Mori B K and Baines W D 2001 Int. J. Heat Mass Transfer 44 771
[31] Van Stralen S J D, Sohal M S, Cole R and Sluyter W M 1975 Int. J. Heat Mass Transfer 18 453
[32] Cai J C, Hu X Y, Standnes D C and You L J 2012 Colloids Surf. A: Physicochem. Eng. Aspect 414 228
[33] Cai J C and Yu B M 2011 Transp. Porous Media 89 251
[34] Yang S R, Xu Z M, Wang J W and Zhao X T 2001 Int. J. Heat Mass Transfer 44 2783
[35] Griffith P and Wallis J D 1960 Chem. Eng. Symp. 56 49
[36] Yang L, Du K, Bao S Y and Wu Y L 2012 Int. J. Refrig. 35 2248
[1] Physical aspects of magnetized Jeffrey nanomaterial flow with irreversibility analysis
Fazal Haq, Muhammad Ijaz Khan, Sami Ullah Khan, Khadijah M Abualnaja, and M A El-Shorbagy. Chin. Phys. B, 2022, 31(8): 084703.
[2] Ratchet transport of self-propelled chimeras in an asymmetric periodic structure
Wei-Jing Zhu(朱薇静) and Bao-Quan Ai(艾保全). Chin. Phys. B, 2022, 31(4): 040503.
[3] Numerical study on permeability characteristics of fractal porous media
Yongping Huang(黄永平), Feng Yao(姚峰), Bo Zhou(周博), Chengbin Zhang(张程宾). Chin. Phys. B, 2020, 29(5): 054701.
[4] Exact solutions of stochastic fractional Korteweg de-Vries equation with conformable derivatives
Hossam A. Ghany, Abd-Allah Hyder, M Zakarya. Chin. Phys. B, 2020, 29(3): 030203.
[5] Transport of velocity alignment particles in random obstacles
Wei-jing Zhu(朱薇静), Xiao-qun Huang(黄小群), Bao-quan Ai(艾保全). Chin. Phys. B, 2018, 27(8): 080504.
[6] Current transport and mass separation for an asymmetric fluctuation system with correlated noises
Jie Wang(王杰), Li-Juan Ning(宁丽娟). Chin. Phys. B, 2018, 27(1): 010501.
[7] Anisotropic transport of microalgae Chlorella vulgaris in microfluidic channel
Nur Izzati Ishak, S V Muniandy, Vengadesh Periasamy, Fong-Lee Ng, Siew-Moi Phang. Chin. Phys. B, 2017, 26(8): 088203.
[8] An image encryption scheme based on three-dimensional Brownian motion and chaotic system
Xiu-Li Chai(柴秀丽), Zhi-Hua Gan(甘志华), Ke Yuan(袁科), Yang Lu(路杨), Yi-Ran Chen(陈怡然). Chin. Phys. B, 2017, 26(2): 020504.
[9] Current and efficiency optimization under oscillating forces in entropic barriers
Ferhat Nutku, Ekrem Aydiner. Chin. Phys. B, 2016, 25(9): 090501.
[10] Current and efficiency of Brownian particles under oscillating forces in entropic barriers
Ferhat Nutku, Ekrem Aydıner. Chin. Phys. B, 2015, 24(4): 040501.
[11] Stability analysis of multi-group deterministic and stochastic epidemic models with vaccination rate
Wang Zhi-Gang (王志刚), Gao Rui-Mei (高瑞梅), Fan Xiao-Ming (樊晓明), Han Qi-Xing (韩七星). Chin. Phys. B, 2014, 23(9): 090201.
[12] Coupling effect of Brownian motion and laminar shear flow on colloid coagulation:a Brownian dynamics simulation study
Xu Sheng-Hua(徐升华), Sun Zhi-Wei(孙祉伟), Li Xu(李旭), and Jin Tong Wang . Chin. Phys. B, 2012, 21(5): 054702.
[13] Impulsive synchronization and control of directed transport in chaotic ratchets
Guo Liu-Xiao(过榴晓), Hu Man-Feng(胡满峰), and Xu Zhen-Yuan(徐振源). Chin. Phys. B, 2010, 19(2): 020512.
No Suggested Reading articles found!