Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 026301    DOI: 10.1088/1674-1056/23/2/026301
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

First-principles study of the structural, elastic, and optical properties for Sr0.5Ca0.5TiO3

Yang Chun-Yan (杨春燕), Zhang Rong (张蓉)
Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, Northwestern Polytechnical University, Xi’an 710072, China
Abstract  A detailed theoretical study of the structural, elastic, and optical properties for Sr0.5Ca0.5TiO3 is carried out by first-principles calculations. The band structure exhibits a direct bandgap of 2.08 eV at the Γ point in the Brillouin zone. The bulk modulus, shear modulus, Young’s modulus, and Poisson’s ratio are derived based on the calculated elastic constants. The bulk modulus B=153 GPa and shear modulus G=81GPa are in good agreement with available experimental data. Poisson’s ratio ν=0.275 suggests that Sr0.5Ca0.5TiO3 should be classified as being a ductile material. Using the electronic band structure and density of states, we analyze the interband contribution to the optical properties. The real and imaginary parts of the dielectric function, as well as the optical properties such as the optical absorption coefficient, refractive index, extinction coefficient, and energy-loss spectrum are calculated. The static dielectric constant ε1(0) and the refractive index n(0) are also investigated.
Keywords:  first-principles      electronic structure      elastic properties      optical properties  
Received:  01 April 2013      Revised:  20 May 2013      Accepted manuscript online: 
PACS:  63.20.dk (First-principles theory)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  62.20.D- (Elasticity)  
  78.20.-e (Optical properties of bulk materials and thin films)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51074129).
Corresponding Authors:  Zhang Rong     E-mail:  xbwl01@nwpu.edu.cn
About author:  63.20.dk; 73.22.-f; 62.20.D-; 78.20.-e

Cite this article: 

Yang Chun-Yan (杨春燕), Zhang Rong (张蓉) First-principles study of the structural, elastic, and optical properties for Sr0.5Ca0.5TiO3 2014 Chin. Phys. B 23 026301

[1] Mishra S K, Ranjan R, Pandey D, Ouillon R, Pinan-Lucarre J P, Ranson P and Pruzan Ph 2005 J. Solid State Chem. 178 2846
[2] Mishra S K, Ranjan R, Pandey D and Kennedy B J 2002 J. Appl. Phys. 91 4447
[3] Ranjan R and Pandey D 2001 J. Phys.: Condens. Matter 13 4251
[4] Ouillon R, Pinan-Lucarre J P, Ranson P, Pruzan Ph, Mishra S K, Ranjan R and Pandey D 2002 J. Phys.: Condens. Matter 14 2079
[5] Becerro A I, Redfern S A T, Carpenter M A, Knight K S and Seifert F 2002 J. Solid State Chem. 167 459
[6] Ranjan R, Pandey D and Lalla N P 2000 Phys. Rev. Lett. 84 3726
[7] Howard C J, Withers R L and Kennedy B J 2001 J. Solid State Chem. 160 8
[8] Bednorz J G and Muller K A 1984 Phys. Rev. Lett. 52 2289
[9] Ranjan R, Pandey D, Schuddinck W, Richard O, De Meulenaere P, Van Landuyt J and Van Tendeloo G 2001 J. Solid State Chem. 162 20
[10] Ranjan R, Pandey D, Siruguri V, Krishna P S R and Paranjpe S K 1999 J. Phys.: Condens. Matter 11 2233
[11] Glazer A M 1972 Acta Cryst. B 28 3384
[12] Glazer A M 1975 Acta Cryst. A 31 756
[13] Ranjan R and Pandey D 2001 J. Phys.: Condens. Matter 13 4239
[14] Ball C J, Begg B D, Cookson D J, Thorogood G J and Vance E R 1998 J. Solid State Chem. 139 238
[15] Qin S, Becerro A I, Seifert F, Gottsmann J and Jiang J 2000 J. Mater. Chem. 10 1609
[16] Yamanaka T, Hirai N and Komatsu Y 2002 Am. Mineral. 87 1183
[17] Qin S, Wu X, Seifert F and Becerro A I 2002 J. Chem. Soc., Dalton Trans. 19 3751
[18] Granicher H and Jakits O 1954 Nuovo Cimento Suppl. 11 480
[19] Yang Z J, Guo Y D, Linghu R F and Yang X D 2012 Chin. Phys. B 21 036301
[20] Zhu F, Dong S and Cheng G 2011 Chin. Phys. B 20 077103
[21] Liu L Y, Wang R Z, Zhu M K and Hou Y D 2013 Chin. Phys. B 22 036401
[22] Zhang S, Pang H, Fang Y and Li F S 2010 Chin. Phys. B 19 127102
[23] Carpenter M A, Howard C J, Knight K S and Zhang Z 2006 J. Phys.: Condens. Matter 18 10725
[24] Woodward D I, Wise P L, Lee W E and Reaney I M 2006 J. Phys.: Condens. Matter 18 2401
[25] Hui Q, Dove M T, Tucker M G, Redfern S A T and Keen D A 2007 J. Phys.: Condens. Matter 19 335214
[26] Ashman C R 2010 Phys. Rev. B 82 024112
[27] Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K and Payne M C 2005 Z. Kristallogr. 220 567
[28] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[29] Pack J D and Monkhors H J 1977 Phys. Rev. B 16 1748
[30] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[31] Vanderbilt D 1990 Phys. Rev. B 41 7892
[32] Perdew J P, Chevary J A, Vosko S H, Jaskson K A, Pederson M P, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[33] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[34] Panda K B and Ravi Chandran K S 2006 Acta Mater. 54 1641
[35] Wu Q and Li S S 2012 Comput. Mater. Sci. 53 436
[36] Chung D H and Buessem W R 1967 J. Appl. Phys. 38 2010
[37] Chung D H and Buessem W R 1967 J. Appl. Phys. 38 2535
[38] Hill R 1952 Proc. Phys. Soc. A 65 349
[39] Wu Z, Zhao E, Xiang H, Hao X, Liu X and Meng J 2007 Phys. Rev. B 76 054115
[40] Walsh J N, Taylor P A, Buckley A, Darling T W, Schreuer J and Carpenter M A 2008 Phys. Earth Planet. Inter. 167 110
[41] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[42] Cao X R, Li Y S, Cheng X and Zhang Y 2012 Comput. Mater. Sci. 54 84
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[3] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[8] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[9] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[10] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[11] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[12] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[13] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[14] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[15] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
No Suggested Reading articles found!