Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 028102    DOI: 10.1088/1674-1056/23/2/028102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Controlled construction of nanostructures in graphene

Li Zhong-Jun (李忠军), Li Qiang (李强), Cheng Zeng-Guang (程增光), Li Hong-Bian (李红变), Fang Ying (方英)
National Center for Nanoscience and Technology, Beijing 100190, China
Abstract  We report on the laser-assisted fabrications of nanostructures in graphene membranes supported on polymer films. By using a laser beam to deposit heat locally, irradiated polymer instantaneously melts and vaporizes. During laser drilling of the polymer, the single-layer graphene membrane adheres to the polymer surface and consequently forms tens of nanometer deep wells. Due to the short time scale of laser irradiation, heat diffusion in the polymer is negligible, and the excitation energy is highly confined in the polymer. As a result, graphene nanowells of hundreds of nanometers in diameter can be patterned with high fidelity. With the increasing of nanowell density, we observe the spontaneous formation of nanowrinkles connecting pairs of nanowells in the graphene membranes. Importantly, Raman spectra confirm that no defects are introduced in graphene membranes by laser irradiation under our experimental conditions. Our results highlight the possibility to construct nanostructures and to design novel devices based on graphene.
Keywords:  graphene      nanowrinkles      laser ablation      polymer drilling  
Received:  04 May 2013      Revised:  05 August 2013      Accepted manuscript online: 
PACS:  81.05.ue (Graphene)  
  61.48.Gh (Structure of graphene)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21173055 and 21161120321).
Corresponding Authors:  Fang Ying     E-mail:  fangy@nanoctr.cn
About author:  81.05.ue; 61.48.Gh

Cite this article: 

Li Zhong-Jun (李忠军), Li Qiang (李强), Cheng Zeng-Guang (程增光), Li Hong-Bian (李红变), Fang Ying (方英) Controlled construction of nanostructures in graphene 2014 Chin. Phys. B 23 028102

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Du X, Skachko I, Barker A and Andrei E Y 2008 Nat. Nanotechnol. 3 491
[3] Miller D L, Kubista K D, Rutter G M, Ruan M, de Heer W A, First P N and Stroscio J A 2009 Science 324 924
[4] Lee C, Wei X D, Kysar J W and Hone J 2008 Science 321 385
[5] Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F and Lau C N 2008 Nano Lett. 8 902
[6] Ramanathan T, Abdala A A, Stankovich S, Dikin D A, Herrera-Alonso M, Piner R D, Adamson D H, Schniepp H C, Chen X, Ruoff R S, Nguyen S T, Aksay I A, Prud’homme R K and Brinson L C 2008 Nat. Nanotechnol. 3 327
[7] Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T and Ruoff R S 2006 Nature 442 282
[8] Wang X, Zhi L J and Mullen K 2008 Nano Lett. 8 323
[9] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y and Hong B H 2009 Nature 457 706
[10] Zhao J, Zhang G Y and Shi D X 2013 Chin. Phys. B 22 057701
[11] Ouyang F P, Peng S L, Zhang H, Weng L B and Xu H 2011 Chin. Phys. B 20 058504
[12] Li P J, Chen K, Chen Y F, Wang Z G, Hao X, Liu J B, He J R and Zhang W L 2012 Chin. Phys. B 21 118101
[13] Cheng Z G, Li Q, Li Z J, Zhou Q Y and Fang Y 2010 Nano Lett. 10 1864
[14] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L and Hone J 2010 Nat. Nanotechnol. 5 722
[15] Jiao L Y, Zhang L, Wang X R, Diankov G and Dai H J 2009 Nature 458 877
[16] Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803
[17] Ponomarenko L A, Schedin F, Katsnelson M I, Yang R, Hill E W, Novoselov K S and Geim A K 2008 Science 320 356
[18] Sols F, Guinea F and Neto A H C 2007 Phys. Rev. Lett. 99 166803
[19] Mucciolo E R, Neto A H C and Lewenkopf C H 2009 Phys. Rev. B 79 075407
[20] Shi Z W, Yang R, Zhang L C, Wang Y, Liu D H, Shi D X, Wang E G and Zhang G Y 2011 Adv. Mater. 23 3061
[21] Pereira V M and Neto A H C 2009 Phys. Rev. Lett. 103 046801
[22] Sun J T, Du S X, Xiao W D, Hu H, Zhang Y Y, Li G and Gao H J 2009 Chin. Phys. B 18 3008
[23] Yang H T 2011 J. Phys.: Condens. Matter 23 505502
[24] Yang M, Cui Y, Wang R Q and Zhao H B 2012 J. Appl. Phys. 112 073710
[25] Guinea F, Katsnelson M I and Geim A K 2010 Nat. Phys. 6 30
[26] Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Ponomarenko L A, Jiang D and Geim A K 2006 Phys. Rev. Lett. 97 016801
[27] Neto A H C, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[28] Gui G, Li J and Zhong J X 2008 Phys. Rev. B 78 075435
[29] Levy N, Burke S A, Meaker K L, Panlasigui M, Zettl A, Guinea F, Neto A H C and Crommie M F 2010 Science 329 544
[30] Xu K, Cao P and Heath J R 2009 Nano Lett. 9 4446
[31] Wang Y, Yang R, Shi Z W, Zhang L C, Shi D X, Wang E G and Zhang G Y 2011 ACS Nano 5 3645
[32] Zhu W, Low T, Perebeinos V, Bol A A, Zhu Y, Yan H, Tersoff J and Avouris P 2012 Nano Lett. 12 3431
[33] Guo Y F and Guo W L 2013 J. Phys. Chem. C 117 692
[34] Guo Y F and Guo W L 2013 Nanoscale 5 318
[35] Pereira V M, Neto A H C and Peres N M R 2009 Phys. Rev. B 80 045401
[36] Ni Z H, Yu T, Lu Y H, Wang Y Y, Feng Y P and Shen Z X 2008 ACS Nano 2 2301
[37] Bao W Z, Miao F, Chen Z, Zhang H, Jang W Y, Dames C and Lau C N 2009 Nat. Nanotechnol. 4 562
[38] Li Z J, Cheng Z G, Wang R, Li Q and Fang Y 2009 Nano Lett. 9 3599
[39] Yamamoto M, Pierre-Louis O, Huang J, Fuhrer M S, Einstein T L and Cullen W G 2012 Phys. Rev. X 2 041018
[40] Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S and Geim A K 2006 Phys. Rev. Lett. 97 187401
[41] Wang D C, Zhang Y M, Zhang Y M, Lei T M, Guo H, Wang Y H, Tang X Y and Wang H 2011 Chin. Phys. B 20 128101
[42] Das A P S, Chakraborty B, Piscanec S, Saha S K, Waghmare U V, Novoselov K S, Krishnamurthy H R, Geim A K, Ferrari A C and Sood A K 2008 Nat. Nanotechnol. 3 210
[43] Matousek P, Towrie M and Parker A W 2002 J. Raman Spectrosc. 33 238
[44] Gurman J L, Baier L and Levin B C 1987 Fire Mater. 11 109
[45] Jorio A, Ferreira E H M, Moutinho M V O, Stavale F, Achete C A and Capaz R B 2010 Phys. Status Solidi B 247 2980
[46] Lobkovsky A, Gentges S, Li H, Morse D and Witten T A 1995 Science 270 1482
[47] Bowden N, Brittain S, Evans A G, Hutchinson J W and Whitesides G M 1998 Nature 393 146
[48] Huang Y, Wu J and Hwang K C 2006 Phys. Rev. B 74 245413
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[7] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[8] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[9] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[10] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[11] Quantitative evaluation of LAL productivity of colloidal nanomaterials: Which laser pulse width is more productive, ergonomic, and economic?
Alena Nastulyavichus, Nikita Smirnov, and Sergey Kudryashov. Chin. Phys. B, 2022, 31(7): 077803.
[12] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[13] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[14] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[15] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
No Suggested Reading articles found!