Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(1): 017501    DOI: 10.1088/1674-1056/23/1/017501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Application of longitudinal generalized magneto-optical ellipsometry in magnetic ultrathin films

Wang Xiao (王晓)a, Lian Jie (连洁)a, Zhang Fu-Jun (张福军)a, Gao Shang (高尚)a, Chen Yan-Xue (陈延学)b, Yu Xiao-Hong (于晓红)a, Li Ping (李萍)a, Wang Ying-Shun (王英顺)a, Sun Zhao-Zong (孙兆宗)a
a Shandong University, Department of Optical Engineering, Jinan 250100, China;
b Shandong University, School of Physics and Microelectronics, Jinan 250100, China
Abstract  The longitudinal generalized magneto-optical ellipsometry (GME) method is extended to the measurement of three-layer ultrathin magnetic films. In this work, the theory of the reflection matrix is introduced into the GME measurement to obtain the reflective matrix parameters of ultrathin multilayer magnetic films with different thicknesses. After that, a spectroscopic ellipsometry is used to determine the optical parameter and the thickness of every layer of these samples, then the magneto-optical coupling constant of the multilayer magnetic ultrathin film can be obtained. After measurements of a series of ultrathin Fe films, the results show that the magneto-optical coupling constant Q is independent of the thickness of the magnetic film. The magneto-optical Kerr rotations and ellipticity are measured to confirm the validity of this experiment. Combined with the optical constants and the Q constant, the Kerr rotations and ellipticity are calculated in theory. The results show that the theoretical curve fits very well with the experimental data.
Keywords:  generalized magneto-optical ellimpsometry      magneto-optical coupling constant  
Received:  09 May 2013      Revised:  02 July 2013      Accepted manuscript online: 
PACS:  75.50.Bb (Fe and its alloys)  
  78.20.Ls (Magneto-optical effects)  
  85.70.Sq (Magnetooptical devices)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2009CB929400) and the Independent Innovation Foundation of Shandong University, China (Grant No. 2012ZB040).
Corresponding Authors:  Lian Jie     E-mail:  opticsdu@163.com

Cite this article: 

Wang Xiao (王晓), Lian Jie (连洁), Zhang Fu-Jun (张福军), Gao Shang (高尚), Chen Yan-Xue (陈延学), Yu Xiao-Hong (于晓红), Li Ping (李萍), Wang Ying-Shun (王英顺), Sun Zhao-Zong (孙兆宗) Application of longitudinal generalized magneto-optical ellipsometry in magnetic ultrathin films 2014 Chin. Phys. B 23 017501

[1] Bland J A C and Heinrich B 2004 Ultrathin Magnetic Structures (3rd edn.) (Berlin: Springer Verlag) p. 7
[2] Spoddig D, Köhler U, Haak M, Kneppe M, Schmitte T, Westphalen A, Theis-Bröhl K, Meckenstock R, You D and Pelzl J 2008 Superlattice Microst. 43 180
[3] Liu L W, Dang H G, Sheng W, Wang Y, Cao J W, Bai J M and Wei F L 2013 Chin. Phys. B 22 047503
[4] Yousaf M Z, Yu J, Hou Y L and Gao S 2013 Chin. Phys. B 22 058702
[5] Ino Y, Shimano R, Svirko Y and Kuwata-Gonokami M 2004 Phys. Rev. B 70 155101
[6] Bergera A and Pufall M R 1997 Appl. Phys. Lett. 71 965
[7] Rauer R, Neuber G, Kunze J, Bäckström J and Rübhausen M 2005 Rev. Sci. Instrum. 76 023910
[8] Arregi J A, Gonzalez-Diaz J B, Bergaretxe E, Idigoras O, Unsal T and Berger A 2012 J. Appl. Phys. 111 103912
[9] Mok K, Du N and Schmidt H 2011 Rev. Sci. Instrum. 82 033112
[10] Mok K, Kov]ács G J, McCord J, Li L, Helm M and Schmidt H 2011 Phys. Rev. B 84 094413
[11] Gonzalez-Diaz J B, Arregi J A, Bergaretxe E, Fertin M J, Idigoras O and Berger A 2013 J. Magn. Magn. Matter. 325 147
[12] Zak J, Moog E R, Liu C and Bader S D 1990 J. Magn. Magn. Matter. 89 107
[13] Zak J, Moog E R, Liu C and Bader S D 1990 J. Appl. Phys. 68 4203
[14] Metzger F, Pluvinage P and Torguet R 1965 Ann. Phys. 10 5
[15] You C Y and Shina S C 1998 J. Appl. Phys. 84 541
[16] Wang X, Lian J, Zhang F J, Yu X H, Li P, Gao S, Wang Y S and Sun Z Z Optik 2013 in press
[17] Azzam R M A and Bashara N M 1999 Ellipsometry and Polarized Light (4th edn.) (New York: Elsevier) p. 119
[18] Wang X, Lian J, Wang G T, Song P, Li P and Gao S 2011 J. Magn. Magn. Matter. 323 2711
[19] Gao S, Lian J, Sun X F, Wang X, Li P and Li Q H 2013 Chin. Phys. Lett. 30 027801
[20] Mok K, Scarlat C, Kovaćs G J, Li L, Zviagin V, McCord J, Helm M and Schmidt H 2011 J. Appl. Phys. 110 123110
[1] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[2] Hysteresis loss reduction in self-bias FeSi/SrFe12O19 soft magnetic composites
Shuangjiu Feng(冯双久), Jiangli Ni(倪江利), Feng Hu(胡锋), Xucai Kan(阚绪材), Qingrong Lv(吕庆荣), and Xiansong Liu(刘先松). Chin. Phys. B, 2022, 31(2): 027503.
[3] Magnetostriction and spin reorientation in ferromagnetic Laves phase Pr(GaxFe1-x)1.9 compounds
Min-Yu Zeng(曾敏玉), Qing Tang(唐庆), Zhi-Wei Mei(梅志巍), Cai-Yan Lu(陆彩燕), Yan-Mei Tang(唐妍梅), Xiang Li(李翔), Yun He(何云), and Ze-Ping Guo(郭泽平). Chin. Phys. B, 2021, 30(6): 067504.
[4] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[5] High permeability and bimodal resonance structure of flaky soft magnetic composite materials
Xi Liu(刘曦), Peng Wu(吴鹏), Peng Wang(王鹏), Tao Wang(王涛), Liang Qiao(乔亮), Fa-Shen Li(李发伸). Chin. Phys. B, 2020, 29(7): 077506.
[6] Influence of Tb on easy magnetization direction and magnetostriction of PrFe1.9 alloy
Chang-Xuan He(何昌璇), Yan-Mei Tang(唐妍梅), Xiang Li(李翔), Yun He(何云), Cai-Yan Lu(陆彩燕), Ze-Ping Guo(郭泽平). Chin. Phys. B, 2019, 28(11): 117501.
[7] Low temperature magnetic and magnetostrictive properties in Pr(Fe1-xCox)1.9 cubic Laves alloys
Yan-Mei Tang(唐妍梅), Hang-Yu Xu(徐行祤), Ye Huang(黄业), Zhi-Xiong Tang(唐志雄), Shao-Long Tang(唐少龙). Chin. Phys. B, 2017, 26(12): 127502.
[8] Anisotropic nanocomposite soft/hard multilayer magnets
Wei Liu(刘伟), Zhidong Zhang(张志东). Chin. Phys. B, 2017, 26(11): 117502.
[9] Magnetic properties of Sn-substituted Ni–Zn ferrites synthesized from nano-sized powders of NiO, ZnO, Fe2O3, and SnO2
M A Ali, M M Uddin, M N I Khan, F U Z Chowdhury, S M Hoque, S I Liba. Chin. Phys. B, 2017, 26(7): 077501.
[10] Dy substitution effect on the temperature dependences of magnetostriction in Pr1-xDyxFe1.9 alloys
Yan-Mei Tang(唐妍梅), Hai-Fu Huang(黄海富), Shao-Long Tang(唐少龙), You-Wei Du(都有为). Chin. Phys. B, 2016, 25(11): 117503.
[11] Negative dependence of surface magnetocrystalline anisotropy energy on film thickness in Co33Fe67 alloy
De-Lai Wang(王得来), Ming-Qi Cui(崔明启), Dong-Liang Yang(杨栋亮), Jun-Cai Dong(董俊才), Wei Xu(徐伟). Chin. Phys. B, 2016, 25(10): 107501.
[12] Hybrid crystals of cuprates and iron-based superconductors
Xia Dai(代霞), Cong-Cong Le(勒聪聪), Xian-Xin Wu(吴贤新), Jiang-Ping Hu(胡江平). Chin. Phys. B, 2016, 25(7): 077402.
[13] Boron diffusion in bcc-Fe studied by first-principles calculations
Xianglong Li(李向龙), Ping Wu(吴平), Ruijie Yang(杨锐杰), Dan Yan(闫丹), Sen Chen(陈森), Shiping Zhang(张师平), Ning Chen(陈宁). Chin. Phys. B, 2016, 25(3): 036601.
[14] FePt nano-stripes fabricated on anodic aluminum oxide templates
Deng Chen-Hua (邓晨华), Qiao Xin-Yu (乔新玉), Wang Fang (王芳), Fan Jiu-Ping (范九萍), Zeng Hao (曾浩), Xu Xiao-Hong (许小红). Chin. Phys. B, 2015, 24(7): 077504.
[15] High frequency characteristics of (Ni75Fe2)x(ZnO)1-x granular thin films with tunable damping coefficient
Li Wen-Chun (李文春), Zuo Ya-Lu (左亚路), Liu Xiao-Hong (刘晓虹), Wei Qing-Qing (魏清清), Zhou Xue-Yun (周雪云), Yao Dong-Sheng (姚东升). Chin. Phys. B, 2015, 24(4): 047503.
No Suggested Reading articles found!