Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(1): 017805    DOI: 10.1088/1674-1056/23/1/017805
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

High quality above 3-μm mid-infrared InGaAsSb/AlGaInAsSb multiple-quantum well grown by molecular beam epitaxy

Xing Jun-Liang (邢军亮), Zhang Yu (张宇), Xu Ying-Qiang (徐应强), Wang Guo-Wei (王国伟), Wang Juan (王娟), Xiang Wei (向伟), Ni Hai-Qiao (倪海桥), Ren Zheng-Wei (任正伟), He Zhen-Hong (贺振宏), Niu Zhi-Chuan (牛智川)
State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  The GaSb-based laser shows its superiority in the 3–4 μm wavelength range. However, for a quantum well (QW) laser structure of InGaAsSb/AlGaInAsSb multiple-quantum well (MQW) grown on GaSb, uniform content and high compressive strain in InGaAsSb/AlGaInAsSb are not easy to control. In this paper, the influences of the growth temperature and compressive strain on the photoluminescence (PL) property of a 3.0-μm InGaAsSb/AlGaInAsSb MQW sample are analyzed to optimize the growth parameters. Comparisons among the PL spectra of the samples indicate that the In0.485GaAs0.184Sb/Al0.3Ga0.45In0.25As0.22Sb0.78 MQW with 1.72% compressive strain grown at 460 ℃ posseses the optimum optical property. Moreover, the wavelength range of the MQW structure is extended to 3.83 μm by optimizing the parameters.
Keywords:  GaSb      multiple-quantum well      photoluminescence  
Received:  25 April 2013      Revised:  10 May 2013      Accepted manuscript online: 
PACS:  78.55.Cr (III-V semiconductors)  
  78.66.Fd (III-V semiconductors)  
  78.67.De (Quantum wells)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2013CB932904, 2012CB932701, 2011CB922201, and 2010CB327600), the National Special Funds for the Development of Major Research Equipment and Instruments, China (Grant No. 2012YQ140005), and the National Natural Science Foundation of China (Grant Nos. 61274013, U1037602, and 61290303).
Corresponding Authors:  Niu Zhi-Chuan     E-mail:  zcniu@semi.ac.cn

Cite this article: 

Xing Jun-Liang (邢军亮), Zhang Yu (张宇), Xu Ying-Qiang (徐应强), Wang Guo-Wei (王国伟), Wang Juan (王娟), Xiang Wei (向伟), Ni Hai-Qiao (倪海桥), Ren Zheng-Wei (任正伟), He Zhen-Hong (贺振宏), Niu Zhi-Chuan (牛智川) High quality above 3-μm mid-infrared InGaAsSb/AlGaInAsSb multiple-quantum well grown by molecular beam epitaxy 2014 Chin. Phys. B 23 017805

[1] Lin C, Grau M, Dier O and Amann M C 2004 Appl. Phys. Lett. 84 5088
[2] Donetsky D, Kipshidze G, Shterengas L, Hosoda T and Belenky G 2007 Electron. Lett. 43 810
[3] Chen J F, Donetsky D, Shterengas L, Kisin M V, Kipshidze G and Belenky G 2008 IEEE J. Quantum. Electon. 44 1204
[4] Gupta J A, Barrios P J, Lapointe J, Aers G C and Storey C 2009 Appl. Phys. Lett. 95 041104
[5] Naehle L, Belahsene S, von Edlinger M, Fischer M, Boissier G, Grech P, Narcy G, Vicet A, Rouillard Y, Koeth J and Worschech L 2011 Electron. Lett. 47 46
[6] Rattunde M, Schmitz J, Kaufel G, Kelemen M, Weber J and Wagner J 2006 Appl. Phys. Lett. 88 081115
[7] Kashani-Shirazi K, Vizbaras K, Bachmann A, Arafin S and Amann M C 2012 IEEE Photonic. Tech. Lett. 21 1106
[8] Belenky G, Shterengas L, Kipshidze G and Hosoda T 2011 IEEE. J. Sel. Top. Quant. 17 1426
[9] Belenky G, Shterengas L, Wang D, Kipshidze G and Vorobjev L 2009 Semicond. Sci. Tech. 24 115013
[10] Hosoda T, Kipshidze G, Tsvid G, Shterengas L and Belenky G 2010 IEEE Photonic. Tech. Lett. 22 718
[11] Vizbaras K and Amann M C 2012 Semicond. Sci. Technol. 27 032001
[12] Wu X H, Elsass C R, Abare A, Mack M, Keller S, Petroff P M, DenBaars S P, Speck J S and Rosner S J 1998 Appl. Phys. Lett. 72 692
[13] Dutta P S, Koteswara Rao K S R, Bhat H L and Kumar V 1995 Appl. Phys. A 61 149
[14] Kaspi R and Evans K R 1995 Appl. Phys. Lett. 67 819
[15] Nagle J, Landesman J P, Larive M, Mottet C and Bois P 1993 J. Cryst. Growth 127 550
[16] Yuan Z L, Xu Z Y, Xu J Z, Zheng B Z, Luo C P, Yang X P and Zhang P H 1996 Chin. Phys. 4 523
[17] Muraki K, Fukatsu S, Shiraki Y and Ito R 1992 Appl. Phys. Lett. 61 557
[18] Motyka M, Sek G, Ryczko K, Misiewicz J, Belahsene S, Boissier G and Rouillard Y 2009 J. Appl. Phys. 106 066104
[19] Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
[20] Donati G P, Kaspi R and Malloy K J 2003 J. Appl. Phys. 94 5814
[21] Gu Y, Zhang Y G, Song Y X, Ye H, Cao Y Y, Li A Z and Wang S M 2013 Chin. Phys. B 22 37802
[1] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[2] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[3] Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy
Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(9): 098504.
[4] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[5] Heterogeneous integration of GaSb layer on (100) Si substrate by ion-slicing technique
Ren-Jie Liu(刘仁杰), Jia-Jie Lin(林家杰), Zheng-Hao Shen(沈正皓), Jia-Liang Sun(孙嘉良), Tian-Gui You(游天桂), Jin Li(李进), Min Liao(廖敏), and Yi-Chun Zhou(周益春). Chin. Phys. B, 2022, 31(7): 076103.
[6] Wet etching and passivation of GaSb-based very long wavelength infrared detectors
Xue-Yue Xu(许雪月), Jun-Kai Jiang(蒋俊锴), Wei-Qiang Chen(陈伟强), Su-Ning Cui(崔素宁), Wen-Guang Zhou(周文广), Nong Li(李农), Fa-Ran Chang(常发冉), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Dong-Wei Jiang(蒋洞微), Dong-Hai Wu(吴东海), Hong-Yue Hao(郝宏玥), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(6): 068503.
[7] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[8] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[9] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[10] Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy
Zhaojun Liu(刘昭君), Lian-Qing Zhu(祝连庆), Xian-Tong Zheng(郑显通), Yuan Liu(柳渊), Li-Dan Lu(鹿利单), and Dong-Liang Zhang(张东亮). Chin. Phys. B, 2022, 31(12): 128503.
[11] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[12] Pressure- and temperature-dependent luminescence from Tm3+ ions doped in GdYTaO4
Peng-Yu Zhou(周鹏宇), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权), Ren-Qin Dou(窦仁琴), Qing-Li Zhang(张庆礼), Bao Liu(刘鲍), Pu-Geng Hou(侯朴赓), Kai-Lin Chi(迟凯粼), and Kun Ding(丁琨). Chin. Phys. B, 2022, 31(1): 017101.
[13] Strain-tuned magnetic properties in (Ga,Fe)Sb: First-principles study
Feng-Chun Pan(潘凤春), Xue-Ling Lin(林雪玲), and Xu-Ming Wang(王旭明). Chin. Phys. B, 2021, 30(9): 096105.
[14] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[15] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
No Suggested Reading articles found!