Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(1): 013402    DOI: 10.1088/1674-1056/23/1/013402
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Radio-frequency spectroscopy of weakly bound molecules in ultracold Fermi gas

Huang Liang-Hui (黄良辉), Wang Peng-Jun (王鹏军), Fu Zheng-Kun (付正坤), Zhang Jing (张靖)
State Key Laboratory of Quantum Optics and Quantum Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
Abstract  We create weakly bound Feshbach molecules in ultracold Fermi gas 40K by sweeping a magnetic field across a broad Feshbach resonance point 202.2 G with a rate of 20 ms/G and perform the dissociation process using radio-frequency (RF) technology. From RF spectroscopy, we obtain the binding energy of the weakly bound molecules in the vicinity of Feshbach resonance. Our measurement also shows that the number of atoms generated from the dissociation process is different at various magnetic fields with the same RF amplitude, which gives us a deeper understanding of weakly bound Feshbach molecules.
Keywords:  Feshbach resonance      scattering length      weakly bound molecules  
Received:  30 June 2013      Revised:  06 August 2013      Accepted manuscript online: 
PACS:  34.20.Cf (Interatomic potentials and forces)  
  67.85.Hj (Bose-Einstein condensates in optical potentials)  
  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB921601), the National Natural Science Foundation of China (Grant No. 11234008), the Project for Excellent Research Team of China (Grant No. 61121064), and the Doctoral Program Foundation of Ministry of Education, China (Grant No. 20111401130001).
Corresponding Authors:  Zhang Jing     E-mail:  jzhang74@aliyun.com

Cite this article: 

Huang Liang-Hui (黄良辉), Wang Peng-Jun (王鹏军), Fu Zheng-Kun (付正坤), Zhang Jing (张靖) Radio-frequency spectroscopy of weakly bound molecules in ultracold Fermi gas 2014 Chin. Phys. B 23 013402

[1] Inouye S, Andrews M R, Stenger J, Miesner H J, Stamper-Kurn D M and Ketterle W 1998 Nature 392 151
[2] Courteille Ph, Freeland R S, Heinzen D J, van Abeelen F A and Verhaar B J 1998 Phys. Rev. Lett. 81 69
[3] Köhler T, Góral K and Julienne P S 2006 Rev. Mod. Phys. 78 1311
[4] Chin C, Grimm R, Julienne P and Tiesinga 2010 Rev. Mod. Phys. 82 1225
[5] Regal C A, Ticknor C, Bohn J L and Jin D S 2003 Nature 424 47
[6] Regal C A, Greiner M and Jin D S 2004 Phys. Rev. Lett. 92 083201
[7] Greiner M, Regal C A and Jin D S 2005 Phys. Rev. Lett. 94 070403
[8] Szymańska M H, Góral K, Köhler T and Burnett K 2005 Phy. Rev. A 72 013610
[9] Stewart J T, Gaebler J P and Jin D S 2008 Nature 454 744
[10] Gaebler J P, Stewart J T, Drake T E, Jin D S, Perali A, Pieri P and Strinati C 2010 Nat. Phys. 569 1709
[11] Zwierlein M W, Stan C A, Schunck C H, Raupach S M F, Kerman A J and Ketterle W 2004 Phys. Rev. Lett. 92 120403
[12] Damascelli A 2004 Phys. Scr. T109 61
[13] Greiner M, Regal C A and Jin D S 2005 Phys. Rev. Lett. 94 070403
[14] Dao T L, Georges A, Dalibard J, Scalomon C and Carusotto I 2007 Phys. Rev. Lett. 98 240402
[15] Dao T L, Carusotto I and Georges A 2009 Phys. Rev. A 80 023627
[16] Wang P J, Fu Z K, Huang L H and Zhang J 2012 Phys. Rev. A 85 053626
[17] Fu Z K, Wang P J, Huang L H, Meng Z M and Zhang J 2012 Phys. Rev. A 86 033607
[18] Wei D, Xiong D Z, Chen H X and Zhang J 2007 Chin. Phys. Lett. 24 679
[19] Wang P J, Xiong D Z, Fu Z K and Zhang J 2011 Chin. Phys. B 20 016701
[20] Wei D, Xiong D Z, Chen H X, Wang P J, Guo L and Zhang J 2007 Chin. Phys. Lett. 24 1541
[21] Xiong D Z, Chen H X, Wang P J, Yu X D, Gao F and Zhang J 2008 Chin. Phys. Lett. 25 843
[22] Xiong D Z, Wang P J, Fu Z K and Zhang J 2010 Opt. Express 18 1649
[23] Wang P J, Chen H X, Xiong D Z, Yu X D, Gao F and Zhang J 2008 Acta Phys. Sin. 57 4840 (in Chinese)
[24] Wang P J, Fu Z K, Chai S J and Zhang J 2011 Chin. Phy. B 20 103401
[25] Ludewig A 2012 Feshbach Resonance in 40K (Ph.D. disseration) (Amsterdam: Universiteit van Amsterdam)
[26] Daniel A 2010 Rubidum 87 D Line Data
[27] Schunck C H, Shin Y I, Schirotzek A and Ketterle W 2008 Nature 454 739
[28] Chin C and Julienne P S 2005 Phys. Rev. A 71 012713
[29] Zürn G, Lompe T, Wenz A N, Jochim S, Julienne P S and Hutson J M 2013 Phys. Rev. Lett. 110 135301
[1] The influence of collision energy on magnetically tuned 6Li-6Li Feshbach resonance
Rong Zhang(张蓉), Yong-Chang Han(韩永昌), Shu-Lin Cong(丛书林), and Maksim B Shundalau. Chin. Phys. B, 2022, 31(6): 063402.
[2] Theoretical analysis of the coupling between Feshbach states and hyperfine excited states in the creation of 23Na40K molecule
Ya-Xiong Liu(刘亚雄), Bo Zhao(赵博). Chin. Phys. B, 2020, 29(2): 023103.
[3] A combined system for generating a uniform magnetic field and its application in the investigation of Efimov physics
Rui Yao(姚睿), Zhen-Dong Sun(孙震东), Shu-Yu Zhou(周蜀渝), Ying Wang(王颖), Yu-Zhu Wang(王育竹). Chin. Phys. B, 2018, 27(1): 016703.
[4] Electric-field-modified Feshbach resonances in ultracold atom-molecule collision
Dong Cheng(程冬), Ya Li(李亚), Eryin Feng(凤尔银), Wuying Huang(黄武英). Chin. Phys. B, 2017, 26(1): 013402.
[5] Two-color laser modulation of magnetic Feshbach resonances
Li Jian (李健), Liu Yong (刘勇), Huang Yin (黄寅), Cong Shu-Lin (丛书林). Chin. Phys. B, 2015, 24(8): 080308.
[6] Elastic scattering of sodium and cesium atoms at ultracold temperatures
Zhang Ji-Cai(张计才), Wang Ke-Dong(王克栋), Liu Yu-Fang(刘玉芳), and Sun Jin-Feng(孙金锋) . Chin. Phys. B, 2011, 20(9): 093401.
[7] Calculation of scattering parameters for ultracold 6Li–7Li elastic collisions
Zhang Ji-Cai(张计才), Sun Jin-Feng(孙金锋), and Liu Yu-Fang(刘玉芳) . Chin. Phys. B, 2011, 20(2): 023401.
[8] Feshbach resonances in an ultracold mixture of 87Rb and 40K
Wang Peng-Jun(王鹏军), Fu Zheng-Kun(付正坤), Chai Shi-Jie(柴世杰), and Zhang Jing(张靖) . Chin. Phys. B, 2011, 20(10): 103401.
[9] Calculation of the elastic collision properties of Na and Li atoms at ultracold temperature
Zhang Ji-Cai(张计才), Zhang Ying(张莹), Du Bing-Ge(杜丙阁), and Sun Jin-Feng(孙金锋). Chin. Phys. B, 2009, 18(4): 1486-1490.
[10] Scattering properties of the ultracold 133Cs2 triplet state
Sun Jin-Feng(孙金锋), Du Bing-Ge(杜丙阁), Zhang Ji-Cai(张计才), Li Wei(李伟), and Zhu Zun-Lue(朱遵略). Chin. Phys. B, 2009, 18(3): 1019-1024.
[11] Controlling the amplitude of soliton in agrowing Bose--Einstein condensate by means of Feshbach resonance
He Zhang-Ming(何章明), Wang Deng-Long(王登龙), Zhang Wei-Xi(张蔚曦), Wang Feng-Jiao(王凤姣), and Ding Jian-Wen(丁建文). Chin. Phys. B, 2008, 17(10): 3640-3643.
[12] Ab initio calculations on the a3+u state properties of dimer 7Li2
Shi De-Heng(施德恒), Sun Jin-Feng(孙金锋), Zhu Zun-Lue(朱遵略), and Liu Yu-Fang(刘玉芳). Chin. Phys. B, 2007, 16(9): 2701-2708.
[13] Calculation of the elastic scattering properties for cold and ultracold 39K atoms in a triplet state
Hu Qiu-Bo(胡秋波), Wang Xiao-Fei(王晓飞), Sun Jin-Feng(孙金锋), and Zhu Zun-Lue(朱遵略). Chin. Phys. B, 2007, 16(8): 2367-2370.
[14] Accurate calculation of the elastic scattering properties of 7Li atoms at ultralow temperatures
Sun Jin-Feng (孙金锋), Zhang Ji-Cai (张计才), Wang Jie-Min (王杰敏). Chin. Phys. B, 2006, 15(3): 531-535.
[15] Dynamics of solitons in Bose-Einstein condensate with time-dependent atomic scattering length
Li Hua-Mei(李画眉). Chin. Phys. B, 2006, 15(10): 2216-2222.
No Suggested Reading articles found!