Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(11): 110312    DOI: 10.1088/1674-1056/22/11/110312
Special Issue: TOPICAL REVIEW — Quantum information
TOPICAL REVIEW—Quantum information Prev   Next  

Disorder and decoherence in coined quantum walks

Zhang Rong (张融)a, Qin Hao (秦豪)a, Tang Bao (唐宝)a, Xue Peng (薛鹏)a b
a Department of Physics, Southeast University, Nanjing 211189, China;
b State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
Abstract  This article aims to provide a review on quantum walks. Starting form a basic idea of discrete-time quantum walks, we will review the impact of disorder and decoherence on the properties of quantum walks. The evolution of the standard quantum walks is deterministic and disorder introduces randomness to the whole system and change interference pattern leading to the localization effect. Whereas, decoherence plays the role of transmitting quantum walks to classical random walks.
Keywords:  quantum walk      disorder      decoherence  
Received:  08 October 2013      Accepted manuscript online: 
PACS:  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  74.50.+r (Tunneling phenomena; Josephson effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11004029 and 11174052), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2010422), the Ph.D. Program of the Ministry of Education of China, the Excellent Young Teachers Program of Southeast University of China, the National Basic Research Program of China (Grant No. 2011CB921203), and the Open Fund from the State Key Laboratory of Precision Spectroscopy of East China Normal University.
Corresponding Authors:  Xue Peng     E-mail:  gnep.eux@gmail.com

Cite this article: 

Zhang Rong (张融), Qin Hao (秦豪), Tang Bao (唐宝), Xue Peng (薛鹏) Disorder and decoherence in coined quantum walks 2013 Chin. Phys. B 22 110312

[1] Feynman R P, Leighton R B and Sands M 1964 Feynman Lectures on Physcis
[2] Aharonov Y, Davidovich L and Zagury N 1993 Phys. Rev. A 48 1687
[3] Farhi E and Gutmann S 1998 Phys. Rev. A 58 915
[4] Ambainis A 2003 International Journal of Quantum Information 1 507
[5] Childs A M, Cleve R, Deotto E, Farhi E, Gutmann S and Spielman D A 2003 35th ACM Symposium on Theory of Computing pp. 59–68
[6] Shenvi N, Kempe J and Whaley K B 2002 Phys. Rev. A 67 052307
[7] Kempe J 2003 Contemp. Phys. 44 307
[8] Childs M A 2009 Phys. Rev. Lett. 102 180501
[9] Childs A M, Gosset D and Webb Z 2013 Science 339 791
[10] Lovett N B, Cooper Everitt S M, Trevers M and Kendon V 2010 Phys. Rev. A 81 042330
[11] Kendon V and Maloyer O 2007 Theor. Comput. Sci. 394 187
[12] Kurzyński P and Wójcik A 2011 Phys. Rev. A 83 062315
[13] Oliveira A C, Portugal R and Donangelo R 2006 Phys. Rev. A 74 012312
[14] Brun T A, Carteret H A and Ambainis A 2003 Phys. Rev. Lett. 91 130602
[15] Crespi A, Osellame R, Ramponi R, Giovannetti V, Fazio R, Sansoni L, Nicol F D, Sciarrino F and Mataloni P 2013 Nat. Photon. 7 322
[16] Kitagawa T, Rudner M S, Berg E and Demler E 2010 Phys. Rev. A 82 033429
[17] Kitagawa T, Broome M A, Fedrizzi A, Rudner M S, Berg E, Kassal I, Aspuru-Guzik A, Demler E and White A G 2012 Nat. Commun. 3 882
[18] Xue P and Sanders B C 2008 New J. Phys. 8 053025
[19] Xue P, Sanders B C and Leibfried D 2009 Phys. Rev. Lett. 103 183602
[20] Xue P, Sanders B C, Blais A and Lalumiére K 2008 Phys. Rev. A 78 042334
[21] Xu Y Y, Zhou F, Chen L, Xie Y, Xue P and Feng M 2012 Chin. Phys. B 21 040304
[22] Xue P 2013 J. Comput. Theor. Nanosci. 10 1606
[23] Aharonov D, Ambainis A, Kemp J and Vazitani U 2001 Proc. 33rd Annual ACM STOC. ACM NY 50
[24] Konno N 2002 Quantum Inf. Process. 1 345
[25] Konno N 2005 J. Math. Jpn 57 1179
[26] Kendon V M and Sanders B C 2004 Phys. Rev. A 71 022307
[27] Mackay T D, Bartlett S D, Stephenson L T and Sanders B C 2002 J. Phys. A: Math. Gen. 35 2745
[28] Du J, Li H, Xu X, Shi M, Wu J, Zhou X and Han R 2003 Phys. Rev. A 67 042316
[29] Ryan C A, Laforest M, Boileau J C and Laflamme R 2005 Phys. Rev. A 72 062317
[30] Lu D, Zhu J, Zou P, Peng X, Yu Y, Zhang S, Chen Q and Du J 2010 Phys. Rev. A 81 022308
[31] Zähringer F, Kirchmair G, Gerritsma R, Solano E, Blatt R and Roos C F 2010 Phys. Rev. Lett. 104 100503
[32] Schmitz H, Matjeschk R, Schneider Ch, Glueckert J, Enderlein M, Huber T and Schaetz T 2009 Phys. Rev. Lett. 103 090504
[33] Cote R, Russell A, Eyler E E and Gould P L 2006 New J. Phys. 8 156
[34] Karski M, Förster L, Choi J, Steffen A, AltW, Meschede D andWidera A 2009 Science 325 5937
[35] Do B, Stohler M L, Balasubramanian S, Elliott D S, Eash C, Fischbach E, Fischbach M A, Mills A and Zwickl B 2005 J. Opt. Soc. Am. B 22 499
[36] Broome M A, Fedrizzi A, Lanyon B P, Kassal I, Guzik A A and White A G 2010 Phys. Rev. Lett. 104 153602
[37] Kitagawa T, Broome M A, Fedrizzi A, Rudner M S, Berg E, Kassal I, Aspuru-Guzik A, Demler E and White A G 2012 Nat. Commun. 3 882
[38] Schreiber A, Cassemiro K N, Potoček V, Gábris A, Mosley P J, Andersson E, Jex I and Silberhorn Ch 2010 Phys. Rev. Lett. 104 050502
[39] Schreiber1 A, Cassemiro K N, Potoček V, Gábris A, Jex I and Silberhorn Ch 2011 Phys. Rev. Lett. 106 180403
[40] Peruzzo A, Lobino M, Matthews J C F, Matsuda N, Politi A, Poulios K, Zhou X, Lahini Y, Ismail N, Wörhoff K, Bromberg Y, Silberberg Y, Thompson M G and O’Brien J L 2010 Science 329 1500
[41] Schreiber A, Gábris A, Rohde P P, Laiho K, Štefaňák M, Potoček V, Hamilton C, Jex I and Silberhorn Ch 2012 Science 336 55
[42] Crespi A, Osellame R, Ramponi R, Giovannetti V, Fazio R, Sansoni L, Nicola F D, Sciarrino F and Mataloni P 2013 Nat. Photon. 7 322
[43] Owens J O, Broome M A, Biggerstaff D N, Goggin M E, Fedrizzi A, Linjordet T, Ams M, Marshall G D, Twamley J, Withford M J and White A G 2011 New J. Phys. 13 075003
[44] Anderson P W 1958 Phys. Rev. 109 1492
[45] Wójcik A, Luczak T, Kurzyński P, Grudka A, Gdala T and Bzdega M B 2012 Phys. Rev. A 85 012329
[46] Wójcik A, Luczak T, Kurzyński P, Grudka A and Bednarska M 2004 Phys. Rev. Lett. 93 180601
[47] Buerschaper O and Burnett K 2004 arXiv:0406039v2 [quant-ph]
[48] Chandrashekar C M 2012 arXiv:1212.5984v1
[49] Shikano Y and Katsura H 2010 Phys. Rev. E 82 031122
[50] Chandrashekar C M 2011 Phys. Rev. A 83 022320
[51] Inui N and Konishi Y 2004 Phys. Rev. A 69 052323
[52] Liu Ch and Petulante N 2009 Phys. Rev. A 79 032312
[53] Kollár B, Štefaňák M, Kiss T and Jex I 2010 Phys. Rev. A 82 012303
[54] Souza A M and Andrade R F S 2013 Science Reports 3 1976
[55] Kendon V and Tregenna B 2003 Phys. Rev. A 67 042315
[56] Maloyer O and Kendon V 2007 New J. Phys. 9 87
[57] Brun T A, Carteret H A and Ambainis A 2003 Phys. Rev. A 67 052317
[58] Xue P and Sanders B C 2013 Phys. Rev. A 87 022334
[59] Brun T A, Carteret H A and Ambainis A 2003 Phys. Rev. A 67 032304
[60] Xue P and Zhang Y S 2013 Chin. Phys. B 22 070302
[61] Karski M, Forster L, Choi J M, Steffen A, Alt W, Meschede D and Widera A 2009 Science 325 174
[62] Genske M, Alt W, Steffen A, Werner A H, Werner R F, Meschede D and Alberti A 2013 Phys. Rev. Lett. 110 190601
[63] Schmitz H, Matjeschk R, Schneider Ch, Glueckert J, Enderlein M, Huber T and Schaetz T 2009 Phys. Rev. Lett. 103 090504
[64] Ryan C A, Laforest M, Boileau J C and Laflamme R 2005 Phys. Rev. A 72 062317
[65] Broome M A, Fedrizzi A, Lanyon B P, Kassal I, Aspuru-Guzik A and White A G 2010 Phys. Rev. Lett. 104 153602
[66] Perets H B, Lahini Y, Pozzi F, Sorel M, Morandotti R and Silberberg Y 2008 Phys. Rev. Lett. 100 170506
[67] Sansoni L, Sciarrino F, Vallone G, Mataloni P, Crespi A, Ramponi R and Osellame R 2012 Phys. Rev. Lett. 108 010502
[68] Solntsev A S, Sukhorukov A A, Neshev D N and Kivshar Y S 2012 Phys. Rev. Lett. 108 023601
[69] Poulios K, Keil R, Fry D, Meinecke J D A, Matthews J C F, Politi A, Lobino M, Grafe M, Heinrich M, Nolte S, Szameit A and O’Brien J L 2013 arXiv:1308.2554v1
[70] Aspuru-Guzik A and Walther P 2012 Nat. Phys. 8 285
[1] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[2] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[3] Current carrying states in the disordered quantum anomalous Hall effect
Yi-Ming Dai(戴镒明), Si-Si Wang(王思思), Yan Yu(禹言), Ji-Huan Guan(关济寰), Hui-Hui Wang(王慧慧), and Yan-Yang Zhang(张艳阳). Chin. Phys. B, 2022, 31(9): 097302.
[4] Quantum search of many vertices on the joined complete graph
Tingting Ji(冀婷婷), Naiqiao Pan(潘乃桥), Tian Chen(陈天), and Xiangdong Zhang(张向东). Chin. Phys. B, 2022, 31(7): 070504.
[5] Filling up complex spectral regions through non-Hermitian disordered chains
Hui Jiang and Ching Hua Lee. Chin. Phys. B, 2022, 31(5): 050307.
[6] Efficient quantum private comparison protocol based on one direction discrete quantum walks on the circle
Jv-Jie Wang(王莒杰), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(5): 050308.
[7] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[8] Quantum walk search algorithm for multi-objective searching with iteration auto-controlling on hypercube
Yao-Yao Jiang(姜瑶瑶), Peng-Cheng Chu(初鹏程), Wen-Bin Zhang(张文彬), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2022, 31(4): 040307.
[9] Disorder in parity-time symmetric quantum walks
Peng Xue(薛鹏). Chin. Phys. B, 2022, 31(1): 010311.
[10] Barrier or easy-flow channel: The role of grain boundary acting on vortex motion in type-II superconductors
Yu Liu(刘宇), Xiao-Fan Gou(苟晓凡), and Feng Xue(薛峰). Chin. Phys. B, 2021, 30(9): 097402.
[11] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[12] Crystallization evolution and relaxation behavior of high entropy bulk metallic glasses using microalloying process
Danhong Li(李丹虹), Changyong Jiang(江昌勇), Hui Li(栗慧), and Mahander Pandey. Chin. Phys. B, 2021, 30(6): 066401.
[13] Quantum walk under coherence non-generating channels
Zishi Chen(陈子石) and Xueyuan Hu(胡雪元). Chin. Phys. B, 2021, 30(3): 030305.
[14] Transport property of inhomogeneous strained graphene
Bing-Lan Wu(吴冰兰), Qiang Wei(魏强), Zhi-Qiang Zhang(张智强), and Hua Jiang(江华). Chin. Phys. B, 2021, 30(3): 030504.
[15] State transfer on two-fold Cayley trees via quantum walks
Xi-Ling Xue(薛希玲) and Yue Ruan(阮越). Chin. Phys. B, 2021, 30(2): 020304.
No Suggested Reading articles found!