Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 128201    DOI: 10.1088/1674-1056/22/12/128201
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Theoretical prediction of the optimal conditions for observing the stereodynamical vector properties of the C(3P)+OH (X2∏)→CO(X1S+)+H(2S) reaction

Wang Yuan-Peng (王远鹏)a, Zhao Mei-Yu (赵美玉)b, Yao Shun-Huai (姚舜怀)c, Song Peng (宋朋)a, Ma Feng-Cai (马凤才)a
a Department of Physics, Liaoning University, Shenyang 110036, China;
b Institute of Theoretical Simulation Chemistry, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150080, China;
c School of Physics, Peking University, Beijing 100871, China
Abstract  The best optimal initial reactant state and collision energy for observing the stereodynamical vector properties of the title reaction in the ground electronic state X2A’ potential energy surface (PES)[Zanchet et al. 2006 J. Phys. Chem. A 110 12017] are theoretically predicted using the quasi-classical trajectory (QCT) method for the first time. The calculated results reveal that the smallest value of the rotational quantum number j, larger vibrational quantum number v, and the lower strength of collision energy should be selected for offering the most obvious picture about the stereodynamical vector properties. Polarization-dependent differential cross sections and the angular momentum alignment distribution, P(θr) and P(Φr) in the center-of-mass frame, are obtained to gain an insight into the alignment and orientation of the product molecules. The rotational angular momentum vector j’ of CO is aligned to be perpendicular to reagent relative velocity k. The product polarizations align along the y axis, pointing to the positive direction of the y axis. A new method is developed to investigate massive reactions with various initial states and to further study the vector properties of the fundamental reactions in detail.
Keywords:  quasi-classical trajectory      initial states      stereodynamics      polarization      collision energy  
Received:  21 February 2013      Revised:  09 May 2013      Accepted manuscript online: 
PACS:  82.20.Fd (Collision theories; trajectory models)  
  71.15.Pd (Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)  
Fund: Project supported by the Program of Shenyang Key Laboratory of Optoelectronic Materials and Technology, China (Grant No. F12-254-1-00), the National Natural Science Foundation of China (Grant No. 11274149), and the Natural Science Foundation of Liaoning Province, China (Grant No. 20111035).
Corresponding Authors:  Song Peng, Ma Feng-Cai     E-mail:  songpeng@lnu.edu.cn;fcma@lnu.edu.cn

Cite this article: 

Wang Yuan-Peng (王远鹏), Zhao Mei-Yu (赵美玉), Yao Shun-Huai (姚舜怀), Song Peng (宋朋), Ma Feng-Cai (马凤才) Theoretical prediction of the optimal conditions for observing the stereodynamical vector properties of the C(3P)+OH (X2∏)→CO(X1S+)+H(2S) reaction 2013 Chin. Phys. B 22 128201

[1] Chu T S, Zhang Y and Han K L 2006 Int. Rev. Phys. Chem. 25 201
[2] Chu T S 2010 J. Comput. Chem. 31 1385
[3] Ding Y J and Shi Y 2011 Comput. Theor. Chem. 963 306
[4] Wei Q 2012 J. Theor. Comput. Chem. 11 811
[5] Casavecchia P 2000 Rep. Prog. Phys. 63 55
[6] Carty D, Goddard A, Kohler S P K, Sims I R and Smith I W M 2006 J. Phys. Chem. A 110 3101
[7] Zhang W Q, Cong S L, Zhang C H, Xu X S and Chen M D 2009 J. Phys. Chem. A 113 4192
[8] Graff M M 1989 Astrophys. J. 339 239
[9] Zanchet A, Bussery-Honvault B and Honvault P 2006 J. Phys. Chem. A 110 12017
[10] Zanchet A, Halvick P, Rayez J C, Bussery-Honvault B and Honvault P 2007 J Chem. Phys. 126 184308
[11] Lin S Y, Guo H and Honvault P 2008 Chem. Phys. Lett. 453 140
[12] Gray S K, Goldfield E M, Schatz G C and Balint-Kurti G G 1999 Phys. Chem. Chem. Phys. 1 1141
[13] Bussery-Honvault B, Dayou F and Zanchet A 2008 J. Chem. Phys. 129 234302
[14] Zanchet A, Halvick P, Bussery-Honvault B and Honvault P 2008 J. Chem. Phys. 128 204301
[15] Bulut N, Zanchet A, Honvault P, Bussery-Honvault B and Banares L 2009 J. Chem. Phys. 130 194303
[16] Han K L, He G Z and Lou N Q 1993 Chin. Chem. Lett. 4 517
[17] Li B and Han K L 2009 J. Phys. Chem. A 113 10189
[18] Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
[19] Song P, Zhu Y H, Liu J Y and Ma F C 2010 J. Theor. Comput. Chem. 9 935
[20] Zhang W Q, Li Y Z, Xu X S and Chen M D 2010 Chem. Phys. 367 115
[21] Duan L H, Zhang W Q, Xu X S, Cong S L and Chen M D 2009 Mol. Phys. 107 2579
[22] Zhang C H, Zhang W Q and Chen M D 2009 J. Theor. Comput. Chem. 8 403
[23] Li H, Zheng B, Yin J Q and Meng Q T 2011 Chin. Phys. B 20 123401
[24] Bai M M, Ge M H, Yang H and Zheng Y J 2012 Chin. Phys. B 21 123401
[25] Xu Z H, Zong F J and Han B R 2012 Chin. Phys. B 21 093103
[26] Guo Y H, Zhang F Y and Ma H Z 2013 Commn. Comput. Chem. 1 99
[27] Yang T G, Yuan J C, Cheng D H and Chen M D 2013 Commn. Comput. Chem. 1 15
[28] Yue X F 2012 Chin. Phys. B 21 073401
[29] Li R J, Han K L, Li F E, Lu R C, He G Z and Lou N Q 1994 Chem. Phys. Lett. 220 281
[30] Wang M L, Han K L and He G Z 1998 J. Phys. Chem. A 102 10204
[31] Chen M D, Han K L and Lou N Q 2003 J. Chem. Phys. 118 4463
[32] Chen M D, Wang M L, Han K L and Ding S L 1999 Chem. Phys. Lett. 301 303
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[3] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[4] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[5] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[6] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] A band-pass frequency selective surface with polarization rotation
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Jian-Xin Guo(郭建新), Zhe Liu(刘哲), Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2023, 32(2): 024204.
[9] A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
Kang Yang(杨康), Huiqing Hu(胡回清), Jiaojiao Wang(王娇娇), Lingling Deng(邓玲玲), Yunqing Lu(陆云清), and Jin Wang(王瑾). Chin. Phys. B, 2023, 32(2): 024214.
[10] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[11] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[12] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[13] A polarization mismatched p-GaN/p-Al0.25Ga0.75N/p-GaN structure to improve the hole injection for GaN based micro-LED with secondary etched mesa
Yidan Zhang(张一丹), Chunshuang Chu(楚春双), Sheng Hang(杭升), Yonghui Zhang(张勇辉),Quan Zheng(郑权), Qing Li(李青), Wengang Bi(毕文刚), and Zihui Zhang(张紫辉). Chin. Phys. B, 2023, 32(1): 018509.
[14] Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(1): 014201.
[15] Impact of AlxGa1-xN barrier thickness and Al composition on electrical properties of ferroelectric HfZrO/Al2O3/AlGaN/GaN MFSHEMTs
Yue Li(李跃), Xingpeng Liu(刘兴鹏), Tangyou Sun(孙堂友), Fabi Zhang(张法碧), Tao Fu(傅涛), Peihua Wang-yang(王阳培华), Haiou Li(李海鸥), and Yonghe Chen(陈永和). Chin. Phys. B, 2022, 31(9): 097307.
No Suggested Reading articles found!