Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 123401    DOI: 10.1088/1674-1056/22/12/123401
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Potential energy curve study on the 3Π electronic states of GaX (X=F, Cl, and Br) molecules

Cao Yun-Bin (曹云斌), Yang Chuan-Lu (杨传路), Wang Mei-Shan (王美山), Ma Xiao-Guang (马晓光)
School of Physics and Optoelectronics Engineering, Ludong University, Yantai 264025, China
Abstract  The potential energy curves (PECs) of the 3Π states of GaX (X=F, Cl, and Br) molecules are calculated using the multireference configuration interaction method with a large contracted basis set aug-cc-pV5Z. The PECs are accurately fitted to analytical potential energy functions (APEFs) using the Murrell–Sorbie potential function. The spectroscopic parameters for the states are determined using the obtained APEFs, and compared with the theoretical and experimental data available presently in the literature.
Keywords:  potential energy curve      analytical potential energy function      spectroscopic parameters      multi-reference interaction configuration  
Received:  26 March 2013      Revised:  05 May 2013      Accepted manuscript online: 
PACS:  34.20.Cf (Interatomic potentials and forces)  
  31.50.Df (Potential energy surfaces for excited electronic states)  
  33.20.-t (Molecular spectra)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174117 and 10974078) and the Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Province, China.
Corresponding Authors:  Yang Chuan-Lu     E-mail:  scuycl@gmail.com

Cite this article: 

Cao Yun-Bin (曹云斌), Yang Chuan-Lu (杨传路), Wang Mei-Shan (王美山), Ma Xiao-Guang (马晓光) Potential energy curve study on the 3Π electronic states of GaX (X=F, Cl, and Br) molecules 2013 Chin. Phys. B 22 123401

[1] Grabandt O, Lange C A and Mooyman R 1989 Chem. Phys. Lett. 160 359
[2] Barrow R F, Dodsworth P G and Zeeman P B 1957 Proc. Phys. Soc. Lond. Sect. A 70 34
[3] Hoeft J and Nair K P R 1986 Z. Phys. D: At. Mol. Clusters 4 189
[4] Hoeft J and Nair K P R 1993 Chem. Phys. Lett. 215 371
[5] Mahieu E, Dubois I and Bredohl H 1991 J. Mol. Spectrosc. 150 477
[6] Uehara H, Horiai K and Nakagawa K 1991 Chem. Phys. Lett. 178 553
[7] Dearden D V, Johnson R D and Hudgens J W 1992 J. Chem. Phys. 97 8880
[8] Venkatasubramanian R, Saksena M D and Singh M 1993 Chem. Phys. Lett. 210 367
[9] Sunanda K, Saksena M D and Lakshminarayana G 1994 J. Mol. Spectrosc. 168 158
[10] Saksena M D, Venkatasubramanian R and Singh M 1997 Can. J. Phys. 75 191
[11] Kim G and Balasubramanian K 1992 Chem. Phys. Lett. 193 109
[12] Kim G and Balasubramanian K 1992 J. Mol. Spectrosc. 152 192
[13] Mochizuki Y and Tanaka K 1998 Theor. Chem. Acc. 101 257
[14] Barschlicher C W 1999 Theor. Chem. Acc. 101 421
[15] Yang X Z, Lin M R, Zou W X and Zhang B Z 2002 Chem. Phys. Lett. 362 190
[16] Yang X Z, Lin M R, Zou W X and Zhang B Z 2004 J. Mol. Struct. THEOCHEM 668 209
[17] Singh V B 2005 J. Phys. Chem. Ref. Data 34 23
[18] Saksena M D, Deob M N, Sunandaa K and Khana H A 2006 J. Mol. Spectrosc. 235 166
[19] Gao F, Yang C L, Hu Z Y and Wang M S 2007 Chin. Phys. 16 3668
[20] Bai F J, Yang C L, Qian Q and Zhang L 2009 Chin. Phys. B 18 549
[21] Wang J M and Sun J F 2011 Acta Phys. Sin. 60 123103 (in Chinese)
[22] Wang J M, Sun J F and Shi D H 2010 Chin. Phys. B 19 113601
[23] Tong X F, Yang C L, Xiao J, Wang M S and Ma X G 2010 Chin. Phys. B 19 123102
[24] Werner H J and Knowles P J 1988 J. Chem. Phys. 89 5803
[25] Knowles P J and Werner H J 1988 Chem. Phys. Lett. 145 514
[26] MOLPRO, version 2010.1, a package of ab initio programs by Werner H J, Knowles P J, Lindh R, Manby F R, Schütz M, Celani P, Korona T, Lindh R, Mitrushenkov A, Rauhut G, Shamasundar K R, Adler T B, Amos R D, Bernhardsson A, Berning A, Cooper D L, Deegan M J O, Dobbyn A J, Eckert F, Goll E, Hampel C, Hesselmann A, Hetzer G, Hrenar T, Jansen G, Köppl C, Liu Y, Lloyd A W, Mata R A, May A J, McNicholas S J, Meyer W, Mura M E, Nicklaß A, O’Neill D P, Palmieri P, Peng D, Pflüger K, Pitzer R, Reiher M, Shiozaki T, Stoll H, Stone A J, Tarroni R, Thorsteinsson T and Wang M, see http://www.molpro.net
[27] Huber K P and Herzberg G 1979 Spectroscopic Constants of Diatomic Molecules Vol. 4 (New York: Van Nostrand Reinhold) p. 716
[28] Savithry T, Rao D V K, Murty A A N and Rao P T 1974 Physica 75 386
[29] Venkatasubramanian R, Saksena M D and Singh M 1994 J. Mol. Spectrosc. 168 290
[30] Borkowska-Burnecka J and Zyrnicki W 1994 Bull. Pol. Acad. Sci. 42 63
[31] Yang X Z, Lin M R, Zou W X and Zhang B Z 2004 J. Phys. Chem. A 108 4341
[1] Spectroscopic study of B2Σ+–X1 2Π1/2 transition of electron electric dipole moment candidate PbF
Ben Chen(陈犇), Yi-Ni Chen(陈旖旎), Jia-Nuan Pan(潘佳煖), Jian-Ping Yin(印建平), and Hai-Ling Wang(汪海玲). Chin. Phys. B, 2022, 31(9): 093301.
[2] Theoretical study on the transition properties of AlF
Yun-Guang Zhang(张云光), Ling-Ling Ji(吉玲玲), Ru Cai(蔡茹),Cong-Ying Zhang(张聪颖), and Jian-Gang Xu(徐建刚). Chin. Phys. B, 2022, 31(5): 053101.
[3] Highly accurate theoretical study on spectroscopic properties of SH including spin-orbit coupling
Shu-Tao Zhao(赵书涛), Xin-Peng Liu(刘鑫鹏), Rui Li(李瑞), Hui-Jie Guo(国慧杰), and Bing Yan(闫冰). Chin. Phys. B, 2021, 30(7): 073104.
[4] Configuration interaction study on low-lying states of AlCl molecule
Xiao-Ying Ren(任笑影), Zhi-Yu Xiao(肖志宇), Yong Liu(刘勇), and Bing Yan(闫冰). Chin. Phys. B, 2021, 30(5): 053101.
[5] Exploration and elaboration of photo-induced proton transfer dynamical mechanism for novel 2-[1,3]dithian-2-yl-6-(7aH-indol-2-yl)-phenol sensor
Lei Xu(许磊), Tian-Jie Zhang(张天杰), Qiao-Li Zhang(张巧丽), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2020, 29(5): 053102.
[6] Theoretical insights into photochemical ESITP process for novel DMP-HBT-py compound
Guang Yang(杨光)†, Kaifeng Chen(陈凯锋), Gang Wang(王岗), and Dapeng Yang(杨大鹏). Chin. Phys. B, 2020, 29(10): 103103.
[7] Low-lying electronic states of aluminum monoiodide
Xiang Yuan(袁翔), Shuang Yin(阴爽), Yi Lian(连艺), Pei-Yuan Yan(颜培源), Hai-Feng Xu(徐海峰), Bing Yan(闫冰). Chin. Phys. B, 2019, 28(4): 043101.
[8] Exploring the effect of aggregation-induced emission on the excited state intramolecular proton transfer for a bis-imine derivative by quantum mechanics and our own n-layered integrated molecular orbital and molecular mechanics calculations
Huifang Zhao(赵慧芳), Chaofan Sun(孙朝范), Xiaochun Liu(刘晓春), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2019, 28(1): 018201.
[9] Diffusion Monte Carlo calculations on LaB molecule
Nagat Elkahwagy, Atif Ismail, S M A Maize, K R Mahmoud. Chin. Phys. B, 2018, 27(9): 093102.
[10] Potential energy curves, transition dipole moments, and radiative lifetimes of KBe molecule
Ming-Jie Wan(万明杰), Cheng-Guo Jin(金成国), You Yu(虞游), Duo-Hui Huang(黄多辉), Ju-Xiang Shao(邵菊香). Chin. Phys. B, 2017, 26(3): 033101.
[11] MRCI+Q study of the low-lying electronic states of CdF including spin—orbit coupling
Shu-Tao Zhao(赵书涛), Bing Yan(闫冰), Rui Li(李瑞), Shan Wu(武山), Qiu-Ling Wang(王秋玲). Chin. Phys. B, 2017, 26(2): 023105.
[12] Ab initio investigation of sulfur monofluoride and its singly charged cation and anion in their ground electronic state
Song Li(李松), Shan-Jun Chen(陈善俊), Yan Chen(陈艳), Peng Chen(陈朋). Chin. Phys. B, 2016, 25(3): 033101.
[13] Low-lying electronic states of CuN calculated by MRCI method
Shu-Dong Zhang(张树东), Chao Liu(刘超). Chin. Phys. B, 2016, 25(10): 103103.
[14] Accurate calculation of the potential energy curve and spectroscopic parameters of X2Σ+ state of 12Mg1H
Wu Dong-Lan (伍冬兰), Tan Bin (谭彬), Xie An-Dong (谢安东), Yan Bing (闫冰), Ding Da-Jun (丁大军). Chin. Phys. B, 2015, 24(4): 043401.
[15] Accurate ab initio-based analytical potential energy function for S21Δg) via extrapolation to the complete basis set limit
Zhang Lu-Lu (张路路), Gao Shou-Bao (高守宝), Meng Qing-Tian (孟庆田), Song Yu-Zhi (宋玉志). Chin. Phys. B, 2015, 24(1): 013101.
No Suggested Reading articles found!