Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(11): 117102    DOI: 10.1088/1674-1056/22/11/117102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Energy transfer between two aggregates in light-harvesting complexes

Wang Xiao-Lian (汪小莲), Li Hong-Rong (李宏荣), Zhang Pei (张沛), Li Fu-Li (李福利)
Department of Applied Physics, Xian Jiaotong University, Xian 710049, China
Abstract  Energy transfer processes between two aggregates in a coupled chromophoric-pigment (protein) system are studied via the standard master equation approach. Each pigment of the two aggregates is modeled as a two-level system. The excitation energy is assumed to be transferred from the donor aggregate to the acceptor aggregate. The model can be used to theoretically simulate many aspects of light-harvesting complexes (LHCs). By applying the real bio-parameters of photosynthesis, we numerically investigate the efficiency of energy transfer (EET) between the two aggregates in terms of some factors, e.g., the initial coherence of the donor aggregate, the coupling strengthes between the two aggregates and between different pigments, and the effects of noise from the environment. Our results provide evidence for that the actual numbers of pigments in the chromophoric rings of LHCs should be the optimum parameters for a high EET. We also give a detailed analysis of the effects of noise on the EET.
Keywords:  light-harvesting complexes      energy transfer      decoherent effects  
Received:  27 April 2013      Revised:  27 May 2013      Accepted manuscript online: 
PACS:  71.35.-y (Excitons and related phenomena)  
  71.23.An (Theories and models; localized states)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11174233) and the National Basic Research Program of China (Grant No. 2011CB311807).
Corresponding Authors:  Li Hong-Rong     E-mail:  hrli@mail.xjtu.edu.cn

Cite this article: 

Wang Xiao-Lian (汪小莲), Li Hong-Rong (李宏荣), Zhang Pei (张沛), Li Fu-Li (李福利) Energy transfer between two aggregates in light-harvesting complexes 2013 Chin. Phys. B 22 117102

[1] Blankenship R E 2002 Molecular Mechanisms of Photosynthesis (Oxford: Blackwell Science)
[2] Fleming G R and Grondelle R V 1994 Phys. Today 47 48
[3] Engel G S, Calhoun T R, Read E L, Ahn T K, Mancal T, Cheng Y C, Blankenship R E and Fleming G R 2007 Nature 446 782
[4] Lee H, Cheng Y C and Fleming G R 2007 Science 316 1462
[5] Collini E and Scholes D 2009 Science 323 369
[6] Collini E, Wong C Y, Wilk K E, Curmi P M G, Brumer P and Scholes G D 2010 Nature 463 644
[7] Mercer I P, El-Taha Y C, Kajumba N, Marangos J P, Tisch J W G, Gabrielsen M, Cogdell R J, Springate E and Turcu E 2009 Phys. Rev. Lett. 102 057402
[8] Panitchayangkoon G, Hayes D, Fransted K A, Caram J R, Harel E, Wen J, Blankenship R E and Engel G S 2010 Proc. Natl. Acad. Sci. USA 107 12766
[9] Cheng Y C and Silbey R J 2006 Phys. Rev. Lett. 96 028103
[10] Castro A O, Lee C F, Olsen F F and Johnson N F 2008 Phys. Rev. B 78 085115
[11] Plenio M B and Huelga S F 2008 New J. Phys. 10 113019
[12] Mohseni M, Rebentrost P, Lloyd S and Aspuru-Guzik A 2008 J. Chem. Phys. 129 174106
[13] Rebentrost P, Mohseni M, Kassal I, Lloyd S and Aspuru-Guzik A 2009 New J. Phys. 11 033003
[14] Caruso F, Chin A W, Datta A, Huelga S F and Plenio M B 2009 J. Chem. Phys. 131 105106
[15] Yang S, Xu D Z, Song Z and Sun C P 2010 J. Chem. Phys. 132 234501
[16] Nazir A 2009 Phys. Rev. Lett. 103 146404
[17] McCutcheon D P S and Nazir A 2011 Phys. Rev. B 83 165101
[18] Sarovar M, Ishizaki A, Fleming G R and Whaley K B 2010 Nature Phys. 6 462
[19] Caruso F, Chin A W, Datta A, Huelga S F and Plenio M B 2010 Phys. Rev. A 81 062346
[20] Fassioli F and Castro A O 2010 New J. Phys. 12 085006
[21] Liao J Q, Huang J F, Kuang L M and Sun C P 2010 Phys. Rev. A. 82 052109
[22] Ghosh P K, Smirnov A Y and Nori F 2011 Phys. Rev. E 84 061138
[23] Briggs J S and Eisfeld A 2011 Phys. Rev. E 83 051911
[24] Eisfeld A and Briggs J S 2012 Phys. Rev. E 85 046118
[25] Caruso F, Saikin S K, Solano E, Huelga S F, Aspuru-Guzik A and Plenio M B 2012 Phys. Rev. B 85 125424
[26] Caruso F, Montangero S, Calarco T, Huelga S F and Plenio M B 2012 Phys. Rev. A 85 042331
[27] Allegra M and Giorda P 2012 Phys. Rev. E 85 051917
[28] Shabani A, Mohseni M, Rabitz H and Lloyd S 2012 Phys. Rev. E 86 011915
[29] Pachn L A and Brumer P 2013 Phys. Rev. A 87 022106
[30] Lloyd S, Mohseni M, Shabani A and Rabitz H 2011 arXiv: 1111. 4982v1
[31] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)
[32] Tan Q S and Kuang L M 2012 Sci China-Phys. Mech. Astron. 55 1541
[33] Hu X and Schulten K 1997 Phys. Today 50 28
[1] How graph features decipher the soot assisted pigmental energy transport in leaves? A laser-assisted thermal lens study in nanobiophotonics
S Sankararaman. Chin. Phys. B, 2022, 31(8): 088201.
[2] Luminescent characteristics of Tm3+/Tb3+/Eu3+ tri-doped Na5Y9F32 single crystals for white emission with high thermal stability
Lizhi Fang(方立志), Xiong Zhou(周雄), Zhiwei Zhao(赵志伟), Biao Zheng(郑标), Haiping Xia(夏海平), Jun Wang(王军), Hongwei Song(宋宏伟), and Baojiu Chen(陈宝玖). Chin. Phys. B, 2022, 31(12): 127802.
[3] Investigation of fluorescence resonance energy transfer ultrafast dynamics in electrostatically repulsed and attracted exciton-plasmon systems
Hong-Yu Tu(屠宏宇), Ji-Chao Cheng(程基超), Gen-Cai Pan(潘根才), Lu Han(韩露), Bin Duan(段彬), Hai-Yu Wang(王海宇), Qi-Dai Chen(陈岐岱), Shu-Ping Xu(徐抒平), Zhen-Wen Dai(戴振文), and Ling-Yun Pan(潘凌云). Chin. Phys. B, 2021, 30(2): 027802.
[4] Tuning energy transfer efficiency in quantum dots mixture by controling donor/acceptor ratio
Chang Liu(刘畅), Jing Liang(梁晶), Fangfang Wang(王芳芳), Chaojie Ma(马超杰), Kehai Liu(刘科海), Can Liu(刘灿), Hao Hong(洪浩), Huaibin Shen(申怀彬), Kaihui Liu(刘开辉), and Enge Wang(王恩哥). Chin. Phys. B, 2021, 30(12): 127802.
[5] The effects of Er 3 + ion concentration on 2.0-μ m emission performance in Ho 3 + /Tm 3 + co-doped Na 5Y 9F32 single crystal under 800-nm excitation
Benli Ding(丁本利), Xiong Zhou(周雄), Jianli Zhang(章践立), Haiping Xia(夏海平), Hongwei Song(宋宏伟), and Baojiu Chen(陈宝玖). Chin. Phys. B, 2021, 30(1): 017801.
[6] Energy transfer, luminescence properties, and thermal stability of color tunable barium pyrophosphate phosphors
Meng-Jiao Xu(徐梦姣), Su-Xia Li(李素霞), Chen-Chen Ji(季辰辰), Wan-Xia Luo(雒晚霞), Lu-Xiang Wang(王鲁香). Chin. Phys. B, 2020, 29(6): 063301.
[7] Substitution priority of Eu2+ in multi-cation compound Sr0.8Ca0.2Al2Si2O8 and energy transfer
Zhi-Ping Yang(杨志平), Zhen-Ling Li(李振玲), Zhi-Jun Wang(王志军), Pan-Lai Li(李盼来), Miao-Miao Tian(田苗苗), Jin-Ge Cheng(程金阁), Chao Wang(王超). Chin. Phys. B, 2018, 27(1): 017802.
[8] Vibration-assisted coherent excitation energy transfer in a detuned dimer
Xin Wang(王信), Hao Chen(陈浩), Chen-yu Li(李晨宇), Hong-rong Li(李宏荣). Chin. Phys. B, 2017, 26(3): 037105.
[9] Phonon-assisted excitation energy transfer in photosynthetic systems
Hao Chen(陈浩), Xin Wang(王信), Ai-Ping Fang(方爱平), Hong-Rong Li(李宏荣). Chin. Phys. B, 2016, 25(9): 098201.
[10] 2.0-μm emission and energy transfer of Ho3+/Yb3+ co-doped LiYF4 single crystal excited by 980 nm
Yang Shuo (杨硕), Xia Hai-Ping (夏海平), Jiang Yong-Zhang (姜永章), Zhang Jia-Zhong (张加忠), Jiang Dong-Sheng (江东升), Wang Cheng (王成), Feng Zhi-Gang (冯治刚), Zhang Jian (张健), Gu Xue-Mei (谷雪梅), Zhang Jian-Li (章践立), Jiang Hao-Chuan (江浩川), Chen Bao-Jiu (陈宝玖). Chin. Phys. B, 2015, 24(6): 067802.
[11] Energy transfer ultraviolet photodetector with 8-hydroxyquinoline derivative-metal complexes as acceptors
Wu Shuang-Hong (吴双红), Li Wen-Lian (李文连), Chen Zhi (陈志), Li Shi-Bin (李世彬), Wang Xiao-Hui (王晓晖), Wei Xiong-Bang (魏雄邦). Chin. Phys. B, 2015, 24(2): 028505.
[12] Concentration effect of the near-infrared quantum cutting of 1788-nm luminescence of Tm3+ ion in (Y1-xTmx)3Al5O12 powder phosphor
Chen Xiao-Bo (陈晓波), Li Song (李崧), Ding Xian-Lin (丁贤林), Yang Xiao-Dong (杨小冬), Liu Quan-Lin (刘泉林), Gao Yan (高燕), Sun Ping (孙萍), Yang Guo-Jian (杨国建). Chin. Phys. B, 2014, 23(8): 087809.
[13] Photoluminescence properties and energy transfer in Y2O3:Eu3+ nanophosphors
Cui Hang (崔航), Zhu Pei-Fen (朱培芬), Zhu Hong-Yang (祝洪洋), Li Hong-Dong (李红东), Cui Qi-Liang (崔啟良). Chin. Phys. B, 2014, 23(5): 057801.
[14] Spectroscopic properties and mechanism of Tm3+/Er3+/Yb3+ co-doped oxyfluorogermanate glass ceramics containing BaF2 nanocrystals
Hu Yue-Bo (胡曰博), Qiu Jian-Bei (邱建备), Zhou Da-Cheng (周大成), Song Zhi-Guo (宋志国), Yang Zheng-Wen (杨正文), Wang Rong-Fei (王荣飞), Jiao Qing (焦清), Zhou Da-Li (周大利). Chin. Phys. B, 2014, 23(2): 024205.
[15] A novel strong green phosphor:K3Gd(PO4)2:Ce3+, Tb3+ for a UV-excited white light-emitting-diode
Jiang Ting-Ming (姜庭明), Yu Xue (余雪), Xu Xu-Hui (徐旭辉), Zhou Da-Cheng (周大成), Yu Hong-Ling (余红玲), Yang Peng-Hui (杨鹏辉), Qiu Jian-Bei (邱建备). Chin. Phys. B, 2014, 23(2): 028505.
No Suggested Reading articles found!