Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(11): 117313    DOI: 10.1088/1674-1056/22/11/117313
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Simulation of the magnetoresistance of Heisenberg spin lattices using the resistor–network model

Lin Ling-Fang (林玲芳), Huang Xin (黄欣), Dong Shuai (董帅)
Department of Physics, Southeast University, Nanjing 211189, China
Abstract  The magnetism and conductance of two-dimensional Heisenberg spin lattices are investigated by using Monte Carlo simulations to qualitatively understand a fascinating magnetoresistance effect observed in magnetic materials and their artificial multilayers. Various magnetic profiles, including a pure ferromagnetic, a pure antiferromagnetic, two phase competitive cases, and an artificial sandwich junction, are simulated, and their conductances are calculated based on an extended resistor–network model. Magnetoresistance is observed in some lattices, which is prominent when the system is near phase boundaries. Compared with real manganites, the absence of colossal magnetoresistance in our simulation implies the essential role of charge ordered phase which is not included in our pure spin model. However, our model provides an intuitive understanding of the spin-dependent conductance in large scale.
Keywords:  magnetoresistance      resistor–network model      phase competition  
Received:  07 April 2013      Revised:  09 May 2013      Accepted manuscript online: 
PACS:  73.43.Qt (Magnetoresistance)  
  75.10.Hk (Classical spin models)  
  75.40.Mg (Numerical simulation studies)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11004027), the New Century Excellent Talents in University of China (Grant No. 10-0325), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100092120032), and the National Student Research Training Program (Grant No. 1310286044).
Corresponding Authors:  Dong Shuai     E-mail:  sdong@seu.edu.cn

Cite this article: 

Lin Ling-Fang (林玲芳), Huang Xin (黄欣), Dong Shuai (董帅) Simulation of the magnetoresistance of Heisenberg spin lattices using the resistor–network model 2013 Chin. Phys. B 22 117313

[1] Žutić I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323
[2] Imada M, Fujimori A and Tokura Y 1998 Rev. Mod. Phys. 70 1039
[3] Dagotto E, Hotta T and Moreo A 2001 Phys. Rep. 344 1
[4] Dagotto E 2005 Science 309 257
[5] Tokura Y 2006 Rep. Prog. Phys. 69 797
[6] Zener C 1951 Phys. Rev. 81 440
[7] Zener C 1951 Phys. Rev. 82 403
[8] Goodenough J B 1955 Phys. Rev. 100 564
[9] Millis A J, Littlewood P B and Shraiman B I 1995 Phys. Rev. Lett. 74 5144
[10] Millis A J 1998 Nature 392 147
[11] Dagotto E 2005 New J. Phys. 7 67
[12] Shen J, Ward T Z and Yin L F 2013 Chin. Phys. B 22 017501
[13] Aliaga H, Magnoux D, Moreo A, Poilblanc D, Yunoki S and Dagotto E 2003 Phys. Rev. B 68 104405
[14] Şen C, Alvarez G and Dagotto E 2007 Phys. Rev. Lett. 98 127202
[15] Yu R, Dong S, Şen C, Alvarez G and Dagotto E 2008 Phys. Rev. B 77 214434
[16] Şen C, Alvarez G and Dagotto E 2010 Phys. Rev. Lett. 105 097203
[17] Şen C, Liang S and Dagotto E 2012 Phys. Rev. B 85 174418
[18] Chen L P, Ma Y B, Song X F, Lian G J, Zhang Y and Xiong G C 2008 Chin. Phys. Lett. 25 3381
[19] Dong S, Yu R, Yunoki S, Liu J M and Dagotto E 2008 Phys. Rev. B 78 064414
[20] Dong S, Yu R, Yunoki S, Liu J M and Dagotto E 2008 Phys. Rev. B 78 155121
[21] Mayr M, Moreo A, Vergés J A, Arispe J, Feiguin A and Dagotto E 2001 Phys. Rev. Lett. 86 135
[22] Caparica A A, Bunker A and Landau D P 2000 Phys. Rev. B 62 9458
[23] Tsai S H and Landau D P 2000 J. Appl. Phys. 87 5807
[24] Dong S, Zhu H, Wu X and Liu J M 2005 Appl. Phys. Lett. 86 022501
[25] Dong S, Zhu H and Liu J M 2007 Phys. Rev. B 76 132409
[26] Ju S, Cai T Y and Li Z Y 2005 Phys. Rev. B 72 184413
[27] Ward T Z, Liang S, Fuchigami K, Yin L F, Dagotto E, Plummer E W and Shen J 2008 Phys. Rev. Lett. 100 247204
[28] Yao X Y, Dong S, Zhu H and Liu J M 2005 J. Appl. Phys. 98 093908
[29] Li X Q, Xu X G, Wang S, Wu Y, Zhang D L, Miao J and Jiang Y 2012 Chin. Phys. B 21 107307
[1] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[2] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[3] Measurement of T wave in magnetocardiography using tunnel magnetoresistance sensor
Zhihong Lu(陆知宏), Shuai Ji(纪帅), and Jianzhong Yang(杨建中). Chin. Phys. B, 2023, 32(2): 020703.
[4] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[5] Analytical formula describing the non-saturating linear magnetoresistance in inhomogeneous conductors
Shan-Shan Chen(陈珊珊), Yang Yang(杨阳), and Fan Yang(杨帆). Chin. Phys. B, 2022, 31(8): 087303.
[6] Spin transport in epitaxial Fe3O4/GaAs lateral structured devices
Zhaocong Huang(黄兆聪), Wenqing Liu(刘文卿), Jian Liang(梁健), Qingjie Guo(郭庆杰), Ya Zhai(翟亚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2022, 31(6): 068505.
[7] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[8] Magnetoresistance effect in vertical NiFe/graphene/NiFe junctions
Pei-Sen Li(李裴森), Jun-Ping Peng(彭俊平), Yue-Guo Hu(胡悦国), Yan-Rui Guo(郭颜瑞), Wei-Cheng Qiu(邱伟成), Rui-Nan Wu(吴瑞楠), Meng-Chun Pan(潘孟春), Jia-Fei Hu(胡佳飞), Di-Xiang Chen(陈棣湘), and Qi Zhang(张琦). Chin. Phys. B, 2022, 31(3): 038502.
[9] Large positive magnetoresistance in photocarrier-doped potassium tantalites
Rui-Shu Yang(杨睿姝), Ding-Bang Wang(王定邦), Yang Zhao(赵阳), Shuan-Hu Wang(王拴虎), and Ke-Xin Jin(金克新). Chin. Phys. B, 2022, 31(12): 127302.
[10] Observation of quadratic magnetoresistance in twisted double bilayer graphene
Yanbang Chu(褚衍邦), Le Liu(刘乐), Yiru Ji(季怡汝), Jinpeng Tian(田金朋), Fanfan Wu(吴帆帆), Jian Tang(汤建), Yalong Yuan(袁亚龙), Yanchong Zhao(赵岩翀), Xiaozhou Zan(昝晓州), Rong Yang(杨蓉), Kenji Watanabe, Takashi Taniguchi, Dongxia Shi(时东霞), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(10): 107201.
[11] Sign reversal of anisotropic magnetoresistance and anomalous thickness-dependent resistivity in Sr2CrWO6/SrTiO3 films
Chunli Yao(姚春丽), Tingna Shao(邵婷娜), Mingrui Liu(刘明睿), Zitao Zhang(张子涛), Weimin Jiang(姜伟民), Qiang Zhao(赵强), Yujie Qiao(乔宇杰), Meihui Chen(陈美慧), Xingyu Chen(陈星宇), Ruifen Dou(窦瑞芬), Changmin Xiong(熊昌民), and Jiacai Nie(聂家财). Chin. Phys. B, 2022, 31(10): 107302.
[12] Probing the magnetization switching with in-plane magnetic anisotropy through field-modified magnetoresistance measurement
Runrun Hao(郝润润), Kun Zhang(张昆), Yinggang Li(李迎港), Qiang Cao(曹强), Xueying Zhang(张学莹), Dapeng Zhu(朱大鹏), and Weisheng Zhao(赵巍胜). Chin. Phys. B, 2022, 31(1): 017502.
[13] Negative tunnel magnetoresistance in a quantum dot induced by interplay of a Majorana fermion and thermal-driven ferromagnetic leads
Peng-Bin Niu(牛鹏斌), Bo-Xiang Cui(崔博翔), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2021, 30(9): 097401.
[14] Current-dependent positive magnetoresistance inLa0.8Ba0.2MnO3 ultrathin films
Guankai Lin(林冠凯), Haoru Wang(王昊儒), Xuhui Cai(蔡旭晖), Wei Tong(童伟), and Hong Zhu(朱弘). Chin. Phys. B, 2021, 30(9): 097502.
[15] High-resolution angle-resolved photoemission study of large magnetoresistance topological semimetal CaAl4
Xu-Chuan Wu(吴徐传), Shen Xu(徐升), Jian-Feng Zhang(张建丰), Huan Ma(马欢), Kai Liu(刘凯), Tian-Long Xia(夏天龙), and Shan-Cai Wang(王善才). Chin. Phys. B, 2021, 30(9): 097303.
No Suggested Reading articles found!