Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(11): 117306    DOI: 10.1088/1674-1056/22/11/117306
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electric field driven plasmon dispersion in AlGaN/GaN high electron mobility transistors

Tan Ren-Bing (谭仁兵)a b c, Qin Hua (秦华)a, Zhang Xiao-Yu (张晓渝)a, Xu Wen (徐文)d
a Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China;
b Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
c University of Chinese Academy of Sciences, Beijing 100049, China;
d Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
Abstract  We present a theoretical study on the electric field driven plasmon dispersion of the two-dimensional electron gas (2DEG) in AlGaN/GaN high electron mobility transistors (HEMTs). By introducing a drifted Fermi–Dirac distribution, we calculate the transport properties of the 2DEG in the AlGaN/GaN interface by employing the balance-equation approach based on the Boltzmann equation. Then, the nonequilibrium Fermi–Dirac function is obtained by applying the calculated electron drift velocity and electron temperature. Under random phase approximation (RPA), the electric field driven plasmon dispersion is investigated. The calculated results indicate that the plasmon frequency is dominated by both the electric field E and the angle between wavevector q and electric field E. Importantly, the plasmon frequency could be tuned by the applied source–drain bias voltage besides the gate voltage (change of the electron density).
Keywords:  two-dimensional electron gas      plasmon      AlGaN/GaN      high electron mobility transistor  
Received:  18 March 2013      Accepted manuscript online: 
PACS:  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  73.21.Fg (Quantum wells)  
  73.63.Hs (Quantum wells)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2009CB929303), the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant Nos. Y0BAQ31001 and KJCX2-EW-705), and the National Natural Science Foundation of China (Grant Nos. 61271157, 61107093, and 10834004).
Corresponding Authors:  Qin Hua     E-mail:  hqin2007@sinano.ac.cn

Cite this article: 

Tan Ren-Bing (谭仁兵), Qin Hua (秦华), Zhang Xiao-Yu (张晓渝), Xu Wen (徐文) Electric field driven plasmon dispersion in AlGaN/GaN high electron mobility transistors 2013 Chin. Phys. B 22 117306

[1] Okisu N, Sambe Y and Kobayashi T 1986 Appl. Phys. Lett. 48 776
[2] Dyakonov M and Shur M 1993 Phys. Rev. Lett. 71 2465
[3] Dyakonov M and Shur M 1996 IEEE Trans. Electron Devices 43 380
[4] Otsuji T, Meziani Y M, Hanabe M, Ishibashi T, Uno T and Sano E 2006 Appl. Phys. Lett. 89 263502
[5] Meziani Y M, Handa H, Knap W, Otsuji T, Sano E, Popov V V, Tsymbalov G M, Coquillat D and Teppe F 2008 Appl. Phys. Lett. 92 201108
[6] Saxena H, Peale R E and Buchwald W R 2009 J. Appl. Phys. 105 113101
[7] Fatimy A E, Dyakonova N, Meziani Y, Otsuji T, Knap W, Vandenbrouk S, Madjour K, Théron D, Gaquiere C, Poisson M A, Delage S, Prystawko P and Skierbiszewski C 2010 J. Appl. Phys. 107 024504
[8] Peralta X G, Allen S J, Wanke M C, Harff N E, Simmons J A, Lilly M P, Reno J L, Burke P J and Eisenstein J P 2002 Appl. Phys. Lett. 81 1627
[9] Sun Y F, Sun J D, Zhou Y, Tan R B, Zeng C H, Xue W, Qin H, Zhang B S and Wu D M 2011 Appl. Phys. Lett. 98 252103
[10] Sun Y F, Sun J D, Zhang X Y, Qin H, Zhang B S and Wu D M 2012 Chin. Phys. B 21 108504
[11] Sun J D, Sun Y F, Wu D M, Cai Y, Qin H and Zhang B S 2012 Appl. Phys. Lett. 100 013506
[12] Sun J D, Qin H, Lewis R A, Sun Y F, Zhang X Y, Cai Y, Wu D M and Zhang B S 2012 Appl. Phys. Lett. 100 173513
[13] Rabbaa S and Stiens J 2011 J. Phys. D: Appl. Phys. 44 325103
[14] Nakamura S, Mukai T and Senoh M 1994 Appl. Phys. Lett. 64 1687
[15] Nakamura S, Senoh M, Nagahama S, Iwasa N, Yamada T, Matsushita T, Kiyoku H and Sugimoto Y 1996 Jpn. J. Appl. Phys. 35 L74
[16] Chow T P and Tyagi R 1994 IEEE Trans. Electron Devices 41 1481
[17] Tilak V, Green B, Kaper V, Kim H, Prunty T, Smart J, Shealy J and Eastman L 2001 IEEE Electron Device Lett. 22 504
[18] Ambacher O, Foutz B, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Sierakowski A J, Schaff W J, Eastman L F, Dimitrov R, Mitchell A and Stutzmann M 2000 J. Appl. Phys. 87 334
[19] Stern F and Howard W E 1967 Phys. Rev. 163 816
[20] Lei X L, Birman J L and Ting C S 1985 J. Appl. Phys. 58 2270
[21] Chattopadhyay D and Queisser H J 1981 Rev. Mod. Phys. 53 745
[22] Xu W, Peeters F M and Devreese J T 1991 Phys. Rev. B 43 14134
[23] Xu W and Zhang C 1997 Phys. Rev. B 55 5259
[24] Tan R B, Xu W, Zhou Y, Zhang X Y and Qin H 2012 Physica B 407 4277
[25] Stern F 1967 Phys. Rev. Lett. 18 546
[26] Wang X F 2005 Phys. Rev. B 72 085317
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[3] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[4] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[5] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[6] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[7] Polyhedral silver clusters as single molecule ammonia sensor based on charge transfer-induced plasmon enhancement
Jiu-Huan Chen(陈九环) and Xin-Lu Cheng(程新路). Chin. Phys. B, 2023, 32(1): 017302.
[8] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[9] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[10] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[11] Ultrafast plasmon dynamics in asymmetric gold nanodimers
Bereket Dalga Dana, Alemayehu Nana Koya, Xiaowei Song(宋晓伟), and Jingquan Lin(林景全). Chin. Phys. B, 2022, 31(6): 064208.
[12] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[13] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[14] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[15] Switchable directional scattering based on spoof core—shell plasmonic structures
Yun-Qiao Yin(殷允桥), Hong-Wei Wu(吴宏伟), Shu-Ling Cheng(程淑玲), and Zong-Qiang Sheng(圣宗强). Chin. Phys. B, 2022, 31(5): 054101.
No Suggested Reading articles found!