Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(11): 117305    DOI: 10.1088/1674-1056/22/11/117305
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Transition from the Kondo effect to a Coulomb blockade in an electron shuttle

Zhang Rong (张荣), Chu Wei-Dong (楚卫东), Duan Su-Qing (段素青), Yang Ning (杨宁)
Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Abstract  We investigate the effect of the mechanical motion of a quantum dot on the transport properties of a quantum dot shuttle. Employing the equation of motion method for the nonequilibrium Green’s function, we show that the oscillation of the dot, i.e., the time-dependent coupling between the dot’s electron and the reservoirs, can destroy the Kondo effect. With the increase in the oscillation frequency of the dot, the density of states of the quantum dot shuttle changes from the Kondo-like to a Coulomb-blockade pattern. Increasing the coupling between the dot and the electrodes may partly recover the Kondo peak in the spectrum of the density of states. Understanding of the effect of mechanical motion on the transport properties of an electron shuttle is important for the future application of nanoelectromechanical devices.
Keywords:  quantum dot      electron shuttle      Kondo effect      Coulomb blockade  
Received:  06 May 2013      Revised:  30 May 2013      Accepted manuscript online: 
PACS:  73.23.Hk (Coulomb blockade; single-electron tunneling)  
  72.15.Qm (Scattering mechanisms and Kondo effect)  
  73.63.Kv (Quantum dots)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11204016).
Corresponding Authors:  Yang Ning     E-mail:  yang_ning@iapcm.ac.cn

Cite this article: 

Zhang Rong (张荣), Chu Wei-Dong (楚卫东), Duan Su-Qing (段素青), Yang Ning (杨宁) Transition from the Kondo effect to a Coulomb blockade in an electron shuttle 2013 Chin. Phys. B 22 117305

[1] Kastner M A 1992 Rev. Mod. Phys. 64 849
[2] Ng T K and Lee P A 1988 Phys. Rev. Lett. 61 1768
[3] Hershfield S, Davies J H andWilkins JW1991 Phys. Rev. Lett. 67 3720
[4] Zhang G M and Yu L 2007 Physics 36 434 (in Chinese)
[5] Hettler M H, Kroha J and Hershfield S 1994 Phys. Rev. Lett. 73 1967
[6] Ralph D C and Buhrman R A 1992 Phys. Rev. Lett. 69 2118
[7] Hershfield S, Davies J H and Wilkins J W 1992 Phys. Rev. B 46 7046
[8] Scheible D V, Weiss C, Kotthaus J P and Blick R H 2004 Phys. Rev. Lett. 93 186801
[9] Erbe A, Weiss C, Zwerger W and Blick R H 2001 Phys. Rev. Lett. 87 096106
[10] Mravlje J and Ramsak A 2008 Phys. Rev. B 78 235416
[11] Shekhter R I, Gorelik L Y, Krive I V, Kiselev M N, Parafilo A V and Jonson M 2013 Nanoelectromechanical Systems 1 1
[12] Zhang J H, Mao X L, Liu Q Q, Gu F, Li M, Liu H and Ge Y X 2012 Chin. Phys. B 21 086101
[13] Kim C, Prada M and Blick R H 2012 ACS Nano 6 651
[14] Wang R Q, Wang B G and Xing D Y 2008 Phys. Rev. Lett. 100 117206
[15] Kiselev M N, Kikoin K, Shekhter R I and Vinokur V M 2006 Phys. Rev. B 74 233403
[16] Donarini A, Novotny T and Jauho A P 2005 New J. Phys. 7 237
[17] Tahir M and MacKinnon A 2011 arXiv:1105.5614v1
[18] Meir Y and Wingreen N S 1992 Phys. Rev. Lett. 68 2512
[19] Costi T A, Schmitteckert P, Kroha J and Wolfle P 1994 Phys. Rev. Lett. 73 1275
[20] Arrachea L 2007 Phys. Rev. B 75 035319
[21] Cornaglia P S, Usaj G and Balseiro C A 2007 Phys. Rev. B 76 241403
[22] Wingreen N S and Meir Y 1994 Phys. Rev. B 49 11040
[23] Aguado R and Langreth D C 2003 Phys. Rev. B 67 245307
[24] Hettler M H and Schoeller H 1995 Phys. Rev. Lett. 74 4907
[25] Wu B H and Cao J C 2010 Phys. Rev. B 81 085327
[26] Liu D E, Burdin S and Baranger H U 2012 arXiv:1210.4349
[27] Arrachea L 2005 Phys. Rev. B 72 125349
[28] Jauho A P, Wingreen N S and Meir Y 1994 Phys. Rev. B 50 5528
[29] Meir Y, Wingreen N S and Lee P A 1993 Phys. Rev. Lett. 70 2601
[30] Fazio R and Raimondi R 1998 Phys. Rev. Lett. 80 2913
[31] Zinbovskaya N A 2008 Phys. Rev. B 78 035331
[32] Meir Y, Wingreen N S and Lee P A 1991 Phys. Rev. Lett. 66 3048
[33] Liang W, Shores M P, Bockrath M, Long J R and Park H 2002 Nature 417 725
[34] Roch N, Florens S, Bouchiat V, Wernsdorfer W and Balestro F 2008 Nature 453 633
[35] Park H, Park J, Lim A K L, Anderson E H, Alivisatos A P and McEuen P L 2000 Nature 407 57
[36] Kashcheyevs V, Aharony A and Entin-Wohlman O 2006 Phys. Rev. B 73 125338
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[5] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[6] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[7] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[8] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[9] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[10] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[11] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[12] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[13] Uniaxial stress effect on quasi-one-dimensional Kondo lattice CeCo2Ga8
Kangqiao Cheng(程康桥), Binjie Zhou(周斌杰), Cuixiang Wang(王翠香), Shuo Zou(邹烁), Yupeng Pan(潘宇鹏), Xiaobo He(何晓波), Jian Zhang(张健), Fangjun Lu(卢方君), Le Wang(王乐), Youguo Shi(石友国), and Yongkang Luo(罗永康). Chin. Phys. B, 2022, 31(6): 067104.
[14] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[15] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
No Suggested Reading articles found!