Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(11): 117101    DOI: 10.1088/1674-1056/22/11/117101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A comparison study on the electronic structures, lattice dynamics and thermoelectric properties of bulk silicon and silicon nanotubes

Lu Peng-Xian (路朋献), Qu Ling-Bo (屈凌波), Cheng Qiao-Huan (程巧换)
College of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
Abstract  In order to investigate the mechanism of the electron and phonon transport in a silicon nanotube (SiNT), the electronic structures, the lattice dynamics, and the thermoelectric properties of bulk silicon (bulk Si) and a SiNT have been calculated in this work using density functional theory and Boltzmann transport theory. Our results suggest that the thermal conductivity of a SiNT is reduced by a factor of 1, while its electrical conductivity is improved significantly, although the Seebeck coefficient is increased slightly as compared to those of the bulk Si. As a consequence, the figure of merit (ZT) of a SiNT at 1200 K is enhanced by 12 times from 0.08 for bulk Si to 1.10. The large enhancement in electrical conductivity originates from the largely increased density of states at the Fermi energy level and the obviously narrowed band gap. The significant reduction in thermal conductivity is ascribed to the remarkably suppressed phonon thermal conductivity caused by a weakened covalent bonding, a decreased phonon density of states, a reduced phonon vibration frequency, as well as a shortened mean free path of phonons. The other factors influencing the thermoelectric properties have also been studied from the perspective of electronic structures and lattice dynamics.
Keywords:  electronic structure      lattice dynamics      thermoelectric properties      silicon nanotube  
Received:  12 April 2013      Revised:  30 May 2013      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  63.20.dk (First-principles theory)  
Fund: Project supported by the Science Foundation of Henan University of Technology, China (Grant Nos. 2011BS056 and 11JCYJ12) and the Post-Doctor Science Research Fund of China (Grant No. 110832).
Corresponding Authors:  Lu Peng-Xian     E-mail:  pengxian_lu@haut.edu.cn

Cite this article: 

Lu Peng-Xian (路朋献), Qu Ling-Bo (屈凌波), Cheng Qiao-Huan (程巧换) A comparison study on the electronic structures, lattice dynamics and thermoelectric properties of bulk silicon and silicon nanotubes 2013 Chin. Phys. B 22 117101

[1] Yang M J, Shen Q and Zhang L M 2011 Chin. Phys. B 20 106202
[2] Li H, Tang X F, Cao W Q and Zhang Q J 2009 Chin. Phys. B 18 287
[3] Kim H, Kim I, Choi H J and Kim W 2010 Appl. Phys. Lett. 96 233106
[4] Shi L H, Yao D L, Zhang G and Li B W 2010 Appl. Phys. Lett. 96 173108
[5] Hochbaum A I, Chen R, Delgado R D, Liang W J, Garnett E C, Najarian M, Majumdar A and Yang P D 2008 Nature 451 163
[6] Boukai A I, Bunimovich Y, Tahir-Kheli J, Yu J K, Goddard III W A and Heath J R 2008 Nature 451 168
[7] Demchenko D O, Heinz P D and Lee B 2011 Nanoscale Res. Lett. 6 502
[8] Liang G, Huang W, Koong C S, Wang J S and Lan J H 2010 J. Appl. Phys. 107 014317
[9] Shi L H, Yao D L, Zhang G and Li B W 2009 Appl. Phys. Lett. 95 063102
[10] Si H G, Wang Y X, Yan Y L and Zhang G B 2012 J. Phys. Chem. C 116 3956
[11] Tan X J, Liu H J, Wen Y W, Lü H Y, Pan L, Shi J and Tang X F 2012 Nanoscale Res. Lett. 7 116
[12] Tan X J, Liu H J, Wen Y W, Lü H Y, Pan L, Shi J and Tang X F 2011 J. Phys. Chem. C 115 21996
[13] Zhou G, Li L and Li G H 2011 J. Appl. Phys. 109 114311
[14] Chen J, Zhang G and Li B W 2010 Nano Lett. 10 3978
[15] Pan L, Liu H J, Wen Y W, Tan X J, Lü H Y and Shi J 2010 J. Comput. Theor. Nanosci. 7 1935
[16] Straumanis M E, Borgeaud P and James W J 1961 J. Appl. Phys. 32 1382
[17] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matt. 14 2717
[18] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[19] Marlo M and Milman V 2000 Phys. Rev. B 62 2899
[20] Hammer B, Hansen L B and Norkov J K 1999 Phys. Rev. B 59 7413
[21] Franscis G P and Payne M C 1990 J. Phys: Condens. Matt. 2 4395
[22] Monkhorst H J and Pack J D 1977 Phys. Rev. B 16 1946
[23] Li J C, Wang C L, Wang M X, Peng H, Zhang R Z, Zhao M L, Liu J, Zhang J L and Mei L M 2009 J. Appl. Phys. 105 043503
[24] Murata M, Nakamura D, Hasegawa Y, Komine T, Taguchi T, Nakamura S, Jaworski C M, Jovovic V and Heremans J P 2009 J. Appl. Phys. 105 113706
[25] Huang K 1979 Solid State Physics (Beijing: People’s Education Press) p. 281 (in Chinese)
[26] Stiewe C, Bertini L, Toprak M, Christensen M, Platzek D, Williams S, Gatti C, Müller E, Iversen B B, Muhammed M and Rowe M 2005 J. Appl. Phys. 97 044317
[27] Wang D, Tang L, Long M Q and Shuai Z G 2009 J. Chem. Phys. 131 224704
[28] Kono Y, Ohya N, Taguchi T, Suekuni K, Takabatake T, Yamamoto S and Akai K 2010 J. Appl. Phys. 107 123720
[29] Peng H, Wang C L, Li J C, Zhang R Z, Wang H C and Sun Y 2011 Chin. Phys. B 20 046103
[30] Bux S K, Blair R G, Gogna P K, Lee H, Chen G, Dresselhaus M S, Kaner R B and Fleurial J P 2009 Adv. Funct. Mater. 19 2445
[31] Ashcroft N W and Mermin N D 1976 Solid State Physics (New York: Harcourt Brace Press)
[32] Caillat T, Kulleck J, Borshchevsky A and Fleurial J P 1996 J. Appl. Phys. 79 8419
[33] Goldsmid H J and Sharp J W 1999 J. Electron. Mater. 28 869
[34] Ziman J M 1972 Principles of the Theory of Solid (Cambridge: Cambridge University Press)
[35] Cutler M, Leavy J F and Fitzpatrick R L 1964 Phys. Rev. 133 A1143
[36] Menon M, Richter E and Subbaswamy K R 1997 Phys. Rev. B 56 12290
[37] Tsaousidou M and Papagelis K 2011 Europhys. Lett. 93 47010
[38] Dresselhaus M S, Chen G, Ren Z, Fleurial J P, Gogna P, Tang M Y, Vashaee D, Lee H, Wang X, Joshi G, Zhu G, Wang D, Blair R, Bux S and Kaner R 2007 MRS Proceedings 1044 U02
[39] Henry A S and Chen G 2008 J. Comput. Theor. Nanosci. 5 141
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[3] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[4] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[5] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
[6] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[7] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[8] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[9] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[10] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[11] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[12] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[13] Facile fabrication of highly flexible, porous PEDOT: PSS/SWCNTs films for thermoelectric applications
Fu-Wei Liu(刘福伟), Fei Zhong(钟飞), Shi-Chao Wang(王世超), Wen-He Xie(谢文合), Xue Chen(陈雪), Ya-Ge Hu(胡亚歌), Yu-Ying Ge(葛钰莹), Yuan Gao(郜源), Lei Wang(王雷), and Zi-Qi Liang(梁子骐). Chin. Phys. B, 2022, 31(2): 027303.
[14] N-type core-shell heterostructured Bi2S3@Bi nanorods/polyaniline hybrids for stretchable thermoelectric generator
Lu Yang(杨璐), Chenghao Liu(刘程浩), Yalong Wang(王亚龙), Pengcheng Zhu(朱鹏程), Yao Wang(王瑶), and Yuan Deng(邓元). Chin. Phys. B, 2022, 31(2): 028204.
[15] Energy band and charge-carrier engineering in skutterudite thermoelectric materials
Zhiyuan Liu(刘志愿), Ting Yang(杨婷), Yonggui Wang(王永贵), Ailin Xia(夏爱林), and Lianbo Ma(马连波). Chin. Phys. B, 2022, 31(10): 107303.
No Suggested Reading articles found!