Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(11): 116201    DOI: 10.1088/1674-1056/22/11/116201
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Pressure-induced phase transitions in single-crystalline Cu4Bi4S9 nanoribbons

Hu Jing-Yu (胡靖宇)a b, Li Jing (李劲)a, Zhang Si-Jia (张思佳)b, Zhao Hao-Fei (赵豪飞)b, Zhang Qing-Hua (张庆华)b, Yao Yuan (姚湲)b, Zhao Qing (赵清)a, Shi Li-Jie (石丽洁)a, Zou Bing-Suo (邹炳锁)a, Li Yan-Chun (李延春)c, Li Xiao-Dong (李晓东)c, Liu Jing (刘景)c, Zhu Ke (朱恪)b, Liu Yu-Long (刘玉龙)b, Jin Chang-Qing (靳常青)b, Yu Ri-Cheng (禹日成)b
a School of Physics, Beijing Institute of Technology, Beijing 100081, China;
b Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
c Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039, China
Abstract  In situ angle dispersive synchrotron X-ray diffraction and Raman scattering measurements under pressure are employed to study the structural evolution of Cu4Bi4S9 nanoribbons, which are fabricated by using a facile solvothermal method. Both experiments show that a structural phase transition occurs near 14.5 GPa, and there is a pressure-induced reversible amorphization at about 25.6 GPa. The electrical transport property of a single Cu4Bi4S9 nanoribbon under different pressures is also investigated.
Keywords:  Cu4Bi4S9 nanoribbon      high pressure      amorphization      phase transition  
Received:  13 May 2013      Revised:  08 June 2013      Accepted manuscript online: 
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  61.05.cp (X-ray diffraction)  
  78.30.-j (Infrared and Raman spectra)  
  64.70.K-  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB932302) and the National Natural Science Foundation of China (Grant No. 11174336).
Corresponding Authors:  Yu Ri-Cheng     E-mail:  rcyu@aphy.iphy.ac.cn

Cite this article: 

Hu Jing-Yu (胡靖宇), Li Jing (李劲), Zhang Si-Jia (张思佳), Zhao Hao-Fei (赵豪飞), Zhang Qing-Hua (张庆华), Yao Yuan (姚湲), Zhao Qing (赵清), Shi Li-Jie (石丽洁), Zou Bing-Suo (邹炳锁), Li Yan-Chun (李延春), Li Xiao-Dong (李晓东), Liu Jing (刘景), Zhu Ke (朱恪), Liu Yu-Long (刘玉龙), Jin Chang-Qing (靳常青), Yu Ri-Cheng (禹日成) Pressure-induced phase transitions in single-crystalline Cu4Bi4S9 nanoribbons 2013 Chin. Phys. B 22 116201

[1] Bierman M J and Jin S 2009 Energy Environ. Sci. 2 1050
[2] Ward J S, Ramanathan K, Hasoon F S, Coutts T J, Keane J, Contreras M A, Moriarty T and Noufi R 2002 Prog. Photovoltaics 10 41
[3] Paire M, Lombez L, Pere-Laperne N, Collin S, Pelouard J L, Lincot D and Guillemoles J F 2011 Appl. Phys. Lett. 98 264102
[4] Nair P K, Huang L, Nair M T S, Hu H L, Meyers E A and Zingaro R A 1997 J. Mater. Res. 12 651
[5] Gerein N J and Haber J A 2006 Chem. Mater. 18 6297
[6] Li H X, Zhang Q L, Pan A L, Wang Y G, Zou B S and Fan H 2011 J. Chem. Mater. 23 1299
[7] Gonzalez J and Rincon C 1989 J. Appl. Phys. 65 2031
[8] Bovornratanaraks T, Saengsuwan V, Yoodee K, McMahon M I, Hejny C and Ruffolo D 2010 J. Phys.: Condens. Matter 22 355801
[9] Yao L D, Luo S D, Shen X, You S J, Yang L X, Zhang S J, Jiang S, Li Y C, Liu J, Zhu K, Liu Y L, Zhou W Y, Chen L C, Jin C Q and Yu R C 2010 J. Mater. Res. 25 2330
[10] Hu J Y, Liang S C, Piao G Z, Zhang S J, Zhang Q H, Yang Y, Zhao Q, Zhu K, Liu Y L, Tang L Y, Li Y C, Liu J, Jin C Q and Yu R C 2011 J. Appl. Phys. 110 014301
[11] Shen X, Shen J, You S J, Yang L X, Tang L Y, Li Y C, Liu J, Yang H, Zhu K, Liu Y L, Zhou W Y, Jin C Q and Yu R C 2009 J. Appl. Phys. 106 113523
[12] Mao H K, Xu J and Bell P M 1986 J. Geophys. Res. 91 4673
[13] Tinoco T, Pollian A, Gomez D and Itie J P 1996 Phys. Status Solidi b 198 433
[14] Li J, Zhong H Z, Liu H J, Zhai T Y, Wang X, Liao M Y, Bando Y, Liu R B and Zou B S 2012 J. Mater. Chem. 22 17813
[15] Yao M G, Wagberg T and Sundqvist B 2010 Phys. Rev. B 81 155441
[16] Parthasarathy G 2011 Am. Mineral. 96 860
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[3] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[4] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[5] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[6] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[7] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[8] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[9] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[10] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[11] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[12] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[13] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[14] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[15] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
No Suggested Reading articles found!