Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(11): 113301    DOI: 10.1088/1674-1056/22/11/113301
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Quantitative analysis of the self-absorption and reemission effects on the emission spectrum of photoluminescence in right-angle excitation–detection configuration

Wang Zhen-Hua (王振华), Wu Yu-E (吴玉娥), Zhang Xin-Zheng (张心正), Yun Zhi-Qiang (云志强), Li Wei (李威), Xu Jing-Jun (许京军)
The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Applied Physics School and School of Physics, Nankai University, Tianjin 300457, China
Abstract  A theoretical approach based on differential radiative transport is proposed to quantitatively analyze the self-absorption and reemission effects on the emission spectrum for right angle excitation–detection photoluminescence measurements, and the wavelength dependence of the reemission effect is taken into account. Simulations and experiments are performed using rhodamine 6G solutions in ethanol as model samples. It is shown that the self-absorption effect is the dominant effect on the detected spectrum by inducing pseudo red-shift and reducing total intensity; whereas the reemission effect partly compensates for signal decrease and also results in an apparent signal gain at the wavelengths without absorption. Both effects decrease with the decrease in the sample concentration and the propagation distance of the emission light inside the sample. We therefore suggest that diluted solutions are required for accurate photoluminescence spectrum measurements and photoluminescence-based measurements.
Keywords:  photoluminescence      self-absorption effect      reemission effect      radiative transport  
Received:  27 February 2013      Revised:  09 June 2013      Accepted manuscript online: 
PACS:  33.70.Jg (Line and band widths, shapes, and shifts)  
  33.50.Dq (Fluorescence and phosphorescence spectra)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2010CB934101), the National Natural Science Foundation of China (Grant No. 11174161), and the International S&T Cooperation Program of China (Grant No. 2011DFA52870).
Corresponding Authors:  Zhang Xin-Zheng     E-mail:  zxz@nankai.edu.cn

Cite this article: 

Wang Zhen-Hua (王振华), Wu Yu-E (吴玉娥), Zhang Xin-Zheng (张心正), Yun Zhi-Qiang (云志强), Li Wei (李威), Xu Jing-Jun (许京军) Quantitative analysis of the self-absorption and reemission effects on the emission spectrum of photoluminescence in right-angle excitation–detection configuration 2013 Chin. Phys. B 22 113301

[1] Petrov E P, Bogomolov V N, Kalosha I I and Gaponenko S V 1998 Phys. Rev. Lett. 81 77
[2] Xia Z and Liu Y 2001 Biophys. J. 81 2395
[3] Becker K, Lupton J M, Feldmann J, Nehls B S, Galbrecht F, Gao D and Scherf U 2006 Adv. Funct. Mater. 16 364
[4] Sakuma K, Hirosaki N and Xie R J 2007 J. Lumin. 126 843
[5] Heikenfeld J, Garter M, Lee D S, Birkhahn R and Steckl A J 1999 Appl. Phys. Lett. 75 1189
[6] Li X P, Chen B J, Shen R S, Zhang J S, Sun J S, Cheng L H, Zhong H Y, Tian Y, Fu S B and Du G T 2013 Chin. Phys. B 22 023202
[7] Kühn H, Petermann K and Huber G 2010 Opt. Lett. 35 1524
[8] Kühn H, Fredrich-Thornton S T, Kränkel C, Peters R and Petermann K 2007 Opt. Lett. 32 1908
[9] Nighswander-Rempel S P, Riesz J, Gilmore J, Bothma J P and Meredith P 2005 J. Phys. Chem. B 109 20629
[10] Cormier J F, Fortin M, Fréchette J, Noiseux I, Vernon M L and Long W 2005 Proc. SPIE 5702 123
[11] Gaigalas K and Wang L L 2008 J. Res. Natl. Inst. Stand. Technol. 113 17
[12] Suzuki K, Kobayashi A, Kaneko S, Takehira K, Yoshihara T, Ishida H, Shiina Y, Oishi S and Tobita S 2009 Phys. Chem. Chem. Phys. 11 9850
[13] Du H, Fuh R A, Li J, Corkan L A and Lindsey J S 1998 Photochem. Photobiol. 68 141
[14] Prahl S Optical Absorption and Emission Data of Rhodamine 6G
[15] Magde D, Wong R and Seybold P G 2002 Photochem. Photobiol. 75 327
[1] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[2] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[3] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[4] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[5] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[6] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[7] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[8] Pressure- and temperature-dependent luminescence from Tm3+ ions doped in GdYTaO4
Peng-Yu Zhou(周鹏宇), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权), Ren-Qin Dou(窦仁琴), Qing-Li Zhang(张庆礼), Bao Liu(刘鲍), Pu-Geng Hou(侯朴赓), Kai-Lin Chi(迟凯粼), and Kun Ding(丁琨). Chin. Phys. B, 2022, 31(1): 017101.
[9] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[10] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[11] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
[12] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
[13] Exciton emissions of CdS nanowire array fabricated on Cd foil by the solvothermal method
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Ya-Juan Hao(郝亚娟), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(1): 016104.
[14] Energy transfer, luminescence properties, and thermal stability of color tunable barium pyrophosphate phosphors
Meng-Jiao Xu(徐梦姣), Su-Xia Li(李素霞), Chen-Chen Ji(季辰辰), Wan-Xia Luo(雒晚霞), Lu-Xiang Wang(王鲁香). Chin. Phys. B, 2020, 29(6): 063301.
[15] Photoluminescence of green InGaN/GaN MQWs grown on pre-wells
Shou-Qiang Lai(赖寿强), Qing-Xuan Li(李青璇), Hao Long(龙浩), Jin-Zhao Wu(吴瑾照), Lei-Ying Ying(应磊莹), Zhi-Wei Zheng(郑志威), Zhi-Ren Qiu(丘志仁), and Bao-Ping Zhang(张保平). Chin. Phys. B, 2020, 29(12): 127802.
No Suggested Reading articles found!