Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 106108    DOI: 10.1088/1674-1056/22/10/106108
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Accurate measurement and influence on device reliability of defect density of a light-emitting diode

Guo Zu-Qiang (郭祖强), Qian Ke-Yuan (钱可元)
Key Laboratory of Information Science and Technology, Graduate School of Tsinghua University at Shenzhen, Shenzhen 518055, China
Abstract  A method of accurately measuring the defect density of a high-power light-emitting diode (LED) is proposed. The method is based on measuring the number of emitting photons in the magnitude of 105 under the injection current as weak as nA and calculating the non-radiative recombination coefficient which is related to defect density. Defect density is obtained with the self-developed measurement system, and it is demonstrated that defect density has an important influence on LED optical properties like luminous flux and internal quantum efficiency (IQE). At the same time, a batch of GaN-based LEDs with the chip size of 1 mm×1 mm are selected to conduct the accelerated aging tests lasting for 1000 hours. The results show that defect density exhibits a greater variation and is more sensitive to LED reliability than luminous flux during aging tests. Based on these results, it is concluded that for the GaN-based LED with a chip size of 1mm×1mm, if its defect density is over 1017/cm3, the LED device performance suffers a serious deterioration, and finally fails.
Keywords:  accurate measurement      defect density      LED      reliability  
Received:  21 March 2013      Revised:  21 May 2013      Accepted manuscript online: 
PACS:  61.72.uj (III-V and II-VI semiconductors)  
  78.20.Jq (Electro-optical effects)  
  78.60.Fi (Electroluminescence)  
Fund: Project supported by the Upgrading Project of Shenzhen Key Laboratory of Information Science and Technology, China (Grant No. CXB20l00525038A), the Shenzhen Science and Technology Development Plan, China (Grant No. 2009003), and the Science and Technology Program of Nanshan District, Shenzhen, China (Grant No. 2011015).
Corresponding Authors:  Qian Ke-Yuan     E-mail:  qianky@sz.tsinghua.edu

Cite this article: 

Guo Zu-Qiang (郭祖强), Qian Ke-Yuan (钱可元) Accurate measurement and influence on device reliability of defect density of a light-emitting diode 2013 Chin. Phys. B 22 106108

[1] Meneghini M, Trevisanell L, Meneghesso G and Zanoni E 2008 IEEE Trans. Dev. Mater. Reliab. 8 323
[2] Sun H H, Guo F Y, Li D Y, Wang L, Zhao D G and Zhao L C 2012 Chin. Phys. Lett. 29 096101
[3] Zhao J Z, Shi Z F, Li X P, Xia X C, Wang H, Zhao Y, Wang J, Liang H W, Zhang B L and Du G T 2011 Chin. Phys. Lett. 28 108101
[4] Jiang D S, Yang H, Wang Y T, Zhang S, Zhao D G, Liu Z S, Zhu J J, Zhang S M, Duan L H and Liu W B2009 Acta Phys. Sin. 58 7952 (in Chinese)
[5] Hangleiter A, Hitzel F and Netzel N 2005 Phys. Rev. B 95 127402
[6] Lester S D and Ponce F A 1995 Appl. Phys. Lett. 66 1249
[7] Cao X A, Sandvik P M and Le Boeuf S F 2003 Microelectron. Reliab. 43 1987
[8] Cao X A, Topol K and Shahedipour-Sandvik F 2002 Proc. SPIE 4776 105
[9] Chernyakov A E, Sobolev M M and Ratnikov V V 2009 Superlattice Microstructure 45 301
[10] Grillot Patrick N and Krames Michael R 2006 IEEE Trans. Dev. Mater. Reliab. 6 564
[11] Youl Ryu H, Sung Kim H and In Shim J 2009 Appl. Phys. Lett. 95 081114
[12] Dai Q and Feng S Q 2010 Appl. Phys. Lett. 97 133507
[13] Xiang F, Qian K Y and Luo Y 2008 Optoelectron. Laser 19 289 (in Chinese)
[14] Kivisaari P, Riuttanen L and Oksanen J 2012 Appl. Phys. Lett. 101 021113
[15] Pursiainen O, Linder N and Jaeger A 2001 Appl. Phys. Lett. 79 2895
[16] Piprek J 2012 Proc. SPIE 7939 16
[17] Bochkareva N I and Voronenkov V V 2010 Appl. Phys. Lett. 133 502
[18] Olshansky R1984 IEEE Quantum Electron. 20 838
[19] Qian K Y, Liu H T and Ji C S 2011 Semicond. Optoelectron. 32 331 (in Chinese)
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] Enhancement of holding voltage by a modified low-voltage trigger silicon-controlled rectifier structure for electrostatic discharge protection
Yuankang Chen(陈远康), Yuanliang Zhou(周远良), Jie Jiang(蒋杰), Tingke Rao(饶庭柯), Wugang Liao(廖武刚), and Junjie Liu(刘俊杰). Chin. Phys. B, 2023, 32(2): 028502.
[4] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[5] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[6] Review of a direct epitaxial approach to achieving micro-LEDs
Yuefei Cai(蔡月飞), Jie Bai(白洁), and Tao Wang(王涛). Chin. Phys. B, 2023, 32(1): 018508.
[7] A polarization mismatched p-GaN/p-Al0.25Ga0.75N/p-GaN structure to improve the hole injection for GaN based micro-LED with secondary etched mesa
Yidan Zhang(张一丹), Chunshuang Chu(楚春双), Sheng Hang(杭升), Yonghui Zhang(张勇辉),Quan Zheng(郑权), Qing Li(李青), Wengang Bi(毕文刚), and Zihui Zhang(张紫辉). Chin. Phys. B, 2023, 32(1): 018509.
[8] Integrated, reliable laser system for an 87Rb cold atom fountain clock
Zhen Zhang(张镇), Jing-Feng Xiang(项静峰), Bin Xu(徐斌), Pan Feng(冯盼), Guang-Wei Sun(孙广伟),Yi-Ming Meng(孟一鸣), Si-Min-Da Deng(邓思敏达), Wei Ren(任伟),Jin-Yin Wan(万金银), and De-Sheng Lü(吕德胜). Chin. Phys. B, 2023, 32(1): 013202.
[9] Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets
Zhaoxia Bi(毕朝霞), Anders Gustafsson, and Lars Samuelson. Chin. Phys. B, 2023, 32(1): 018103.
[10] High throughput N-modular redundancy for error correction design of memristive stateful logic
Xi Zhu(朱熙), Hui Xu(徐晖), Weiping Yang(杨为平), Zhiwei Li(李智炜), Haijun Liu(刘海军), Sen Liu(刘森), Yinan Wang(王义楠), and Hongchang Long(龙泓昌). Chin. Phys. B, 2023, 32(1): 018502.
[11] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[12] Probabilistic quantum teleportation of shared quantum secret
Hengji Li(李恒吉), Jian Li(李剑), and Xiubo Chen(陈秀波). Chin. Phys. B, 2022, 31(9): 090303.
[13] Nonvanishing optimal noise in cellular automaton model of self-propelled particles
Guang-Le Du(杜光乐) and Fang-Fu Ye(叶方富). Chin. Phys. B, 2022, 31(8): 086401.
[14] Three-dimensional coupled-mode model and characteristics of low-frequency sound propagation in ocean waveguide with seamount topography
Ya-Xiao Mo(莫亚枭), Chao-Jin Zhang(张朝金), Li-Cheng Lu(鹿力成), and Sheng-Ming Guo(郭圣明). Chin. Phys. B, 2022, 31(8): 084301.
[15] THz wave generation by repeated and continuous frequency conversions from pump wave to high-order Stokes waves
Zhongyang Li(李忠洋), Qianze Yan(颜钤泽), Pengxiang Liu(刘鹏翔), Binzhe Jiao(焦彬哲), Gege Zhang(张格格), Zhiliang Chen(陈治良), Pibin Bing(邴丕彬), Sheng Yuan(袁胜), Kai Zhong(钟凯), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(7): 074209.
No Suggested Reading articles found!