Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 107102    DOI: 10.1088/1674-1056/22/10/107102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles calculations of electronic and magnetic properties of CeN:The LDA+U method

Hao Ai-Min (郝爱民), Bai Jing (白静)
School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
Abstract  Electronic and magnetic properties of CeN are investigated using first-principles calculations based on density functional theory (DFT) with the LDA+U method. Our results show that CeN is a half-metal. The majority-spin electron band structure has metallic intersections, whereas the minority-spin electron band structure has a semiconducting gap straddling the Fermi level. A small indirect energy gap occurs between X and W. The calculated magnetic moment is 0.99 μB per unit cell.
Keywords:  first-principles calculations      strongly correlated system      electronic structure      magnetic properties  
Received:  05 March 2013      Revised:  17 April 2013      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.Eh (Rare earth metals and alloys)  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  81.40.Rs (Electrical and magnetic properties related to treatment conditions)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2010CB731600 and 2010CB731604-2).
Corresponding Authors:  Hao Ai-Min     E-mail:  aiminhao1991@aliyun.com

Cite this article: 

Hao Ai-Min (郝爱民), Bai Jing (白静) First-principles calculations of electronic and magnetic properties of CeN:The LDA+U method 2013 Chin. Phys. B 22 107102

[1] Duan C G, Sabirianov R F, Mei W N, Dowben P A, Jaswal S S and Tsymbal E Y 2007 J. Phys.: Condens. Matter 19 315220
[2] Larson P, Lambrecht W R L, Chantis A and van Schilfgaarde M 2007 Phys. Rev. B 75 045114
[3] Preston A R H, Granville S, Housden D H, Ludbrook B, Ruck B J, Trodahl H J, Bittar A, Williams G V M, Downes J E, DeMasi A, Zhang Y, Smith K E and Lambrecht W R L 2007 Phys. Rev. B 76 245120
[4] Olcese G L 1979 J. Phys. F: Met. Phys. 9 569
[5] Aerts C M, Strange P, Home M, Temmerman W M, Szotek Z and Svane A 2004 Phys. Rev. B 69 045115
[6] Varma C M 1976 Rev. Mod. Phys. 48 219
[7] Patthey F, Imer J M, Schneider W D, Beck H, Baer Y and Delley B 1990 Phys. Rev. B 42 8864
[8] Delin A, Oppeneer P M, Brooks M S S, Kraft T, Wills J M, Johansson B and Eriksson O 1997 Phys. Rev. B 55 R10173
[9] Sclar N 1962 J. Appl. Phys. 33 2999
[10] Xiao S Q and Takai O 1998 Thin Solid Films 317 137
[11] Lee T Y, Gall D, Shin C S, Hellgren N, Petrov I and Greene J E 2003 J. Appl. Phys. 94 921
[12] Clark S, Segall M, Pickard C, Hasnip P, Refson K and Payne M 2005 Z. Kristallogr. 220 567
[13] Anisimov V I, Aryasetiawan F and Lichtenstein A I 1997 J. Phys.: Condens. Matter 9 767
[14] Ali Z, Ahmad I, Khan B and Khan I 2013 Chin. Phys. Lett. 30 047504
[15] Anderson P W 1978 Rev. Mod. Phys. 50 191
[16] Nolan M, Parker S C and Watson G W 2005 Surf. Sci. 595 223
[17] Castleton C W M, Kullgren J and Hermansson K 2007 J. Chem. Phys. 127 244704
[18] Lu Z, Ma D, Zhang J, Xu G and Yang Z 2012 Chin. Phys. B 21 047505
[19] de Groot R A, Mueller F M, van Engen P G and Buschow K H J 1983 Phys. Rev. Lett. 50 2024
[20] Pandit P, Srivastava V, Rajagopalan M and Sanyal S P 2008 Physica B 403 4333
[21] Jensen J and Mackintosh A R 1991 Rare Earth Magnetism (Oxford: Oxford Science)
[22] Casadei M, Ren X, Rinke P, Rubio A and Scheffler M 2012 Phys. Rev. Lett. 109 146402
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[3] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Magnetic ground state of plutonium dioxide: DFT+U calculations
Yue-Fei Hou(侯跃飞), Wei Jiang(江伟), Shu-Jing Li(李淑静), Zhen-Guo Fu(付振国), and Ping Zhang(张平). Chin. Phys. B, 2023, 32(2): 027103.
[9] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[10] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[11] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[12] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[13] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[14] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[15] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
No Suggested Reading articles found!