Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 106104    DOI: 10.1088/1674-1056/22/10/106104
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effect of vacancy charge state on positron annihilation in silicon

Liu Jian-Dang (刘建党)a b, Cheng Bin (成斌)a b, Kong Wei (孔伟)a b, Ye Bang-Jiao (叶邦角)a b
a State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China;
b Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  The charge-state-dependent lattice relaxation of mono-vacancy in silicon is studied using the first-principles pseudopotential plane-wave method. We observe that the structural relaxation for the first-neighbor atoms of the mono-vacancy is strongly dependent on its charge state. The difference in total electron density between with and without charge states in mono-vacancy and its relevant change due to the localized positron are also examined by means of first-principles simulation, demonstrating the strong interplay between positron and electron. Our calculations reveal that the positron lifetime decreases with absolute charge value increasing.
Keywords:  vacancy      charge state      positron annihilation  
Received:  15 December 2012      Revised:  07 April 2013      Accepted manuscript online: 
PACS:  61.72.jd (Vacancies)  
  71.55.-i (Impurity and defect levels)  
  78.70.Bj (Positron annihilation)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities and the National Natural Science Fundation of China (Grant Nos. 11105139 and 11175171).
Corresponding Authors:  Ye Bang-Jiao     E-mail:  bjye@ustc.edu.cn

Cite this article: 

Liu Jian-Dang (刘建党), Cheng Bin (成斌), Kong Wei (孔伟), Ye Bang-Jiao (叶邦角) Effect of vacancy charge state on positron annihilation in silicon 2013 Chin. Phys. B 22 106104

[1] Puska M J and Nieminen R M 1994 Rev. Mod. Phys. 66 841
[2] De Lima J J P 2011 Nuclear Medicine Imaging Physics (London: Taylor & Francis) p. 74
[3] Liu J D, Zhang J, Zhang L J, Hao Y P, Guo W F, Cheng B and Ye B J 2011 Chin. Phys. B 20 057802
[4] McGuire S, Keeble D J, Mason R E, Coleman P G, Koutsonas Y and Jackson T J 2006 J. Appl. Phys. 100 044109
[5] Seebauer E G and Kratzer M C 2006 Mater. Sci. Eng. R-Rep. 55 57
[6] Bardeleben H J, Cantin J L, Gerstmann U, Scholle A, Greulich-Weber S, Rauls E, Landmann M, Schmidt W G, Gentils A, Botsoa J and Barthe M F 2012 Phys. Rev. Lett. 109 206402
[7] Liu J D, Cheng B, Zhang J, Zhang L J, Weng H M and Ye B J 2011 Chin. Phys. B 20 108105
[8] Van Vechten J A 1988 Phys. Rev. B 38 9913
[9] Arponen J and Pajanne E 1979 Ann. Phys. 121 343
[10] Barbiellini B, Puska M J, Torsti T and Nieminen R M 1995 Phys. Rev. B 51 7341
[11] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[12] Többens D M, Stüßer N, Knorr K, Mayer H M and Lampert G 2001 Mater. Sci. Forum 378-381 288
[13] Seebauer E G and Kratzer M C 2009 Charged Semiconductor Defects: Structure, Thermodynamics and Diffusion (London: Springer) p. 76
[14] Lento J and Nieminen R M 2003 J. Phys.: Condens. Matter 15 4387
[15] Gebauer J, Rudolf F, Polity A, Krause-Rehberg R, Martin J and Becker P 1999 Appl. Phys. A 68 411
[16] Arutyunov N Y, Elsayed M, Krause-Rehberg R, Emtsev V V, Oganesyan G A and Kozlovski V V 2013 J. Phys.: Condens. Matter 25 035801
[17] Laasonen K, Alatalo M, Puska M J and Nieminen R M 1991 J. Phys.: Condens. Matter 3 7217
[1] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[2] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[3] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[4] Dependence of nitrogen vacancy color centers on nitrogen concentration in synthetic diamond
Yong Li(李勇), Xiaozhou Chen(陈孝洲), Maowu Ran(冉茂武), Yanchao She(佘彦超), Zhengguo Xiao(肖政国), Meihua Hu(胡美华), Ying Wang(王应), and Jun An(安军). Chin. Phys. B, 2022, 31(4): 046107.
[5] Intrinsic V vacancy and large magnetoresistance in V1-δSb2 single crystal
Yong Zhang(张勇), Xinliang Huang(黄新亮), Jinglei Zhang(张警蕾), Wenshuai Gao(高文帅), Xiangde Zhu(朱相德), and Li Pi(皮雳). Chin. Phys. B, 2022, 31(3): 037102.
[6] Origin of the low formation energy of oxygen vacancies in CeO2
Han Xu(许涵), Tongtong Shang(尚彤彤), Xuefeng Wang(王雪锋), Ang Gao(高昂), and Lin Gu(谷林). Chin. Phys. B, 2022, 31(10): 107102.
[7] Single-channel vector magnetic information detection method based on diamond NV color center
Qin-Qin Wang(王琴琴), Rui-Rong Wang(王瑞荣), Jin-Ping Liu(刘金萍), Shao-Zhuo Lin(林绍卓), Liang-Wei Wu(武亮伟), Hao Guo(郭浩), Zhong-Hao Li(李中豪), Huan-Fei Wen(温焕飞), Jun Tang(唐军), Zong-Min Ma(马宗敏), and Jun Liu (刘俊). Chin. Phys. B, 2021, 30(8): 080701.
[8] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[9] Characterization, spectroscopic investigation of defects by positron annihilation, and possible application of synthesized PbO nanoparticles
Sk Irsad Ali, Anjan Das, Apoorva Agrawal, Shubharaj Mukherjee, Maudud Ahmed, P M G Nambissan, Samiran Mandal, and Atis Chandra Mandal. Chin. Phys. B, 2021, 30(2): 026103.
[10] Suppression of persistent photoconductivity in high gain Ga2O3 Schottky photodetectors
Haitao Zhou(周海涛), Lujia Cong(丛璐佳), Jiangang Ma(马剑钢), Bingsheng Li(李炳生), Haiyang Xu(徐海洋), and Yichun Liu(刘益春). Chin. Phys. B, 2021, 30(12): 126104.
[11] Density functional theory study of formaldehyde adsorption and decomposition on Co-doped defective CeO2 (110) surface
Yajing Zhang(张亚婧), Keke Song(宋可可), Shuo Cao(曹硕), Xiaodong Jian(建晓东), and Ping Qian(钱萍). Chin. Phys. B, 2021, 30(10): 103101.
[12] Oxygen vacancies and V co-doped Co3O4 prepared by ion implantation boosts oxygen evolution catalysis
Bo Sun(孙博), Dong He(贺栋), Hongbo Wang(王宏博), Jiangchao Liu(刘江超), Zunjian Ke(柯尊健), Li Cheng(程莉), and Xiangheng Xiao(肖湘衡). Chin. Phys. B, 2021, 30(10): 106102.
[13] Enhanced mobility of MoS2 field-effect transistors by combining defect passivation with dielectric-screening effect
Zhao Li(李钊), Jing-Ping Xu(徐静平), Lu Liu(刘璐), and Xin-Yuan Zhao(赵心愿). Chin. Phys. B, 2021, 30(1): 018102.
[14] Quantum plasmons in the hybrid nanostructures of double vacancy defected graphene and metallic nanoarrays
Rui Tang(唐睿), Yang Xu(徐阳), Hong Zhang(张红), and Xin-Lu Cheng(程新路). Chin. Phys. B, 2021, 30(1): 017804.
[15] Selective linear etching of monolayer black phosphorus using electron beams
Yuhao Pan(潘宇浩), Bao Lei(雷宝), Jingsi Qiao(乔婧思), Zhixin Hu(胡智鑫), Wu Zhou(周武), Wei Ji(季威). Chin. Phys. B, 2020, 29(8): 086801.
No Suggested Reading articles found!