Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 104203    DOI: 10.1088/1674-1056/22/10/104203
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Phase grating in a doubly degenerate four-level system

Liu Yun (刘云), Wang Pu (王朴), Peng Shuang-Yan (彭双艳)
College of Physics Science and Technology, Bijie University, Bijie 551700, China
Abstract  In this paper, we suggest a doubly degenerate four-level system, in which the transition takes place between the hyperfine energy 52S1/2 F=1 and 52P3/2 F=2 in rubidium 87 D2 line, for studying atomic phase grating based on the cross-Kerr and phase conjugation effects. The phase grating with high efficiency can be obtained by tuning phase shift Φ between the coupling and probe field, when the coupling intensity is much stronger than the strength of probe field. Under different coupling intensities, a high diffraction efficiency can be maintained. A new and simple way of implementing phase grating is presented. However, in such an atomic system, two main limitations must be taken into account. First, the independence between steady state probe susceptibility and the coupling intensity, when the population decay rate is larger than the Rabi frequency of the coupling field, cannot result in diffraction grating; second, the sample to be prepared should not be too long.
Keywords:  phase grating      quantum interference      four-level system      standing-wave  
Received:  06 December 2013      Revised:  17 June 2013      Accepted manuscript online: 
PACS:  42.50.Ex (Optical implementations of quantum information processing and transfer)  
Fund: Project supported by the Joint Fund for Science and Technology of Bijie University, Science and Technology Bureau of Bijie City, Science and Technology Department of Guizhou Province (Grant No. J-LKB [2013] 17), and the China Postdoctoral Science Foundation (Grant No. 2011M500951).
Corresponding Authors:  Liu Yun     E-mail:  liuyun0865@163.com

Cite this article: 

Liu Yun (刘云), Wang Pu (王朴), Peng Shuang-Yan (彭双艳) Phase grating in a doubly degenerate four-level system 2013 Chin. Phys. B 22 104203

[1] Harris S E 1997 Phys. Today 50 36
[2] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
[3] Lukin M D and Imamoğlu A 2000 Phys. Rev. Lett. 84 1419
[4] Yan M, Rickey E G and Zhu Y F 2001 Opt. Lett. 26 548
[5] Lukin M D and Imamoğlu A 2001 Nature 413 273
[6] Ling H Y, Li Y Q and Xiao M 1998 Phys. Rev. A 57 1338
[7] Mitsunaga M and Imoto N 1999 Phys. Rev. A 59 4773
[8] Luís E E de Araujo 2010 Opt. Lett. 35 977
[9] Xiao Z H, Shin S G and Kim K K 2010 Phys. B: At. Mol. Opt. Phys. 43 161004
[10] Brown A W and Xiao M 2005 Opt. Lett. 30 699
[11] Delagnes J C and Bouchene M A 2007 Phys. Rev. Lett. 98 053602
[12] Hashmi F A and Bouchene M A 2008 Phys. Rev. A 77 051803
[13] Xiao Z H, Shin S G and Kim K K 2010 Proc. SPIE 7846 78460D1-8
[14] Wu Q Q, Liao J Q and Kuang L M 2011 Chin. Phys. B 20 034203
[15] Zhou H T, Wang D W, Wang D, Zhang J X and Zhu S Y 2011 Phys. Rev. A 84 053835
[16] Wang G, Xue Y, Cui C L, Qu Y and Gao J Y 2012 Chin. Phys. B 21 034205
[17] Ekaterina P, Cristian C, Daniel D J and David R S 2012 Opt. Express 20 11005
[1] Multiplexing technology based on SQUID for readout of superconducting transition-edge sensor arrays
Xinyu Wu(吴歆宇), Qing Yu(余晴), Yongcheng He(何永成), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2022, 31(10): 108501.
[2] Chirp-dependent ionization of hydrogen atoms in the presence of super-intense laser pulses
Fengzheng Zhu(朱风筝), Xiaoyu Liu(刘晓煜), Yue Guo(郭月), Ningyue Wang(王宁月), Liguang Jiao(焦利光), and Aihua Liu(刘爱华). Chin. Phys. B, 2021, 30(9): 094209.
[3] Absorption interferometer of two-sided cavity
Miao-Di Guo(郭苗迪) and Hong-Mei Li(李红梅). Chin. Phys. B, 2021, 30(5): 054202.
[4] High-precision three-dimensional Rydberg atom localization in a four-level atomic system
Hengfei Zhang(张恒飞), Jinpeng Yuan(元晋鹏), Lirong Wang(汪丽蓉), Liantuan Xiao(肖连团), and Suo-tang Jia(贾锁堂). Chin. Phys. B, 2021, 30(5): 053202.
[5] Stable quantum interference enabled by coexisting detuned and resonant STIRAPs
Dan Liu(刘丹), Yichun Gao(高益淳), Jianqin Xu(许建琴), and Jing Qian(钱静). Chin. Phys. B, 2021, 30(5): 053701.
[6] Unconventional photon blockade in a three-mode system with double second-order nonlinear coupling
Hong-Yu Lin(林宏宇), Hui Yang(杨慧), and Zhi-Hai Yao(姚治海). Chin. Phys. B, 2020, 29(12): 120304.
[7] Optimization of pick-up coils for weakly damped SQUID gradiometers
Kang Yang(杨康), Jialei Wang(王佳磊), Xiangyan Kong(孔祥燕), Ruihu Yang(杨瑞虎), Hua Chen(陈桦). Chin. Phys. B, 2018, 27(5): 050701.
[8] Performance study of aluminum shielded room for ultra-low-field magnetic resonance imaging based on SQUID: Simulations and experiments
Bo Li(李波), Hui Dong(董慧), Xiao-Lei Huang(黄小磊), Yang Qiu(邱阳), Quan Tao(陶泉), Jian-Ming Zhu(朱建明). Chin. Phys. B, 2018, 27(2): 020701.
[9] Dynamic properties of atomic collective decay in cavity quantum electrodynamics
Yu-Feng Han(韩玉峰), Cheng-Jie Zhu(朱成杰), Xian-Shan Huang(黄仙山), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2018, 27(12): 124206.
[10] Modulation depth of series SQUIDs modified by Josephson junction area
Jie Liu(刘杰), He Gao(高鹤), Gang Li(李刚), Zheng Wei Li(李正伟), Kamal Ahmada, Zhang Ying Shan(张颖珊), Jian She Liu(刘建设), Wei Chen(陈炜). Chin. Phys. B, 2017, 26(9): 098501.
[11] Quantum interference between heralded single photon stateand coherent state
Lei Yang(杨磊), Xiaoxin Ma(马晓欣), Xiaoying Li(李小英). Chin. Phys. B, 2017, 26(7): 074206.
[12] Macroscopic resonant tunneling in an rf-SQUID flux qubit under a single-cycle sinusoidal driving
Jianxin Shi(史建新), Weiwei Xu(许伟伟), Guozhu Sun(孙国柱), Jian Chen(陈健), Lin Kang(康琳), Peiheng Wu(吴培亨). Chin. Phys. B, 2017, 26(4): 047402.
[13] Ballistic transport and quantum interference in InSb nanowire devices
Sen Li(李森), Guang-Yao Huang(黄光耀), Jing-Kun Guo(郭景琨), Ning Kang(康宁), Philippe Caroff, Hong-Qi Xu(徐洪起). Chin. Phys. B, 2017, 26(2): 027305.
[14] Asymmetric dynamic phase holographic grating in nematic liquid crystal
Chang-Yu Ren(任常愚), Hong-Xin Shi(石宏新), Yan-Bao Ai(艾延宝), Xiang-Bao Yin(尹向宝), Feng Wang(王丰), Hong-Wei Ding(丁红伟). Chin. Phys. B, 2016, 25(9): 094218.
[15] Tunable thermoelectric properties in bended graphene nanoribbons
Chang-Ning Pan(潘长宁), Jun He(何军), Mao-Fa Fang(方卯发). Chin. Phys. B, 2016, 25(7): 078102.
No Suggested Reading articles found!