Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 098505    DOI: 10.1088/1674-1056/22/9/098505
Special Issue: TOPICAL REVIEW — Low-dimensional nanostructures and devices
TOPICAL REVIEW—Low-dimensional nanostructures and devices Prev   Next  

Field-effect transistors based on two-dimensional materials for logic applications

Wang Xin-Ran (王欣然), Shi Yi (施毅), Zhang Rong (张荣)
National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
Abstract  Field-effect transistors (FETs) for logic applications, based on two representative two-dimensional (2D) materials, graphene and MoS2, are discussed. These materials have drastically different properties and require different considerations. The unique band structure of graphene necessitates engineering of the Dirac point, including the opening of the bandgap, the doping and the interface, before the graphene can be used in logic applications. On the other hand, MoS2 is a semiconductor, and its electron transport depends heavily on the surface properties, the number of layers, and the carrier density. Finally, we discuss the prospects for the future developments in 2D material transistors.
Keywords:  graphene      MoS2      two-dimensional (2D) materials      field-effect transistors  
Received:  27 July 2013      Accepted manuscript online: 
PACS:  87.75.Hh  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CBA01600), the National Natural Science Foundation of China (Grant Nos. 61261160499 and 11274154), the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011ZX02707), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2012302), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120091110028).
Corresponding Authors:  Wang Xin-Ran     E-mail:  xrwang@nju.edu.cn

Cite this article: 

Wang Xin-Ran (王欣然), Shi Yi (施毅), Zhang Rong (张荣) Field-effect transistors based on two-dimensional materials for logic applications 2013 Chin. Phys. B 22 098505

[1] Ferain I, Colinge C A and Colinge J P 2011 Nature 479 310
[2] Wilk G D, Wallace R M and Anthony J M 2001 J. Appl. Phys. 89 5243
[3] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[4] Xu M, Liang T, Shi M and Chen H 2013 Chem. Rev. 113 3766
[5] Novoselov K S, Fal V I, Colombo L, Gellert P R, Schwab M G and Kim K 2012 Nature 490 192
[6] Geim A K, and Novoselov K S 2007 Nat. Mater. 6 183
[7] Geim A K 2009 Science 324 1530
[8] Weiss N O, Zhou H, Liao L, Liu Y, Jiang S, Huang Y and Duan X 2012 Adv. Mater. 24 5782
[9] Neto A C, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[10] Sarma S D, Adam S, Hwang E H and Rossi E 2011 Rev. Mod. Phys. 83 407
[11] Novoselov K S A, Geim A K, Morozov S, Jiang D, Grigorieva M K I, Dubonos S V and Firsov A A 2005 Nature 438 197
[12] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[13] Young A F and Kim P 2009 Nat. Phys. 5 222
[14] Cheianov V V, Fal’ko V and Altshuler B L 2007 Science 315 1252
[15] Hwang E H and Sarma S D 2008 Phys. Rev. B 77 115449
[16] del Alamo J A 2011 Nature 479 317
[17] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J and Stormer H L 2008 Solid State Commun. 146 351
[18] Zhou H, Yu W J, Liu L, Cheng R, Chen Y, Huang X and Duan X 2013 Nat. Commun. 4 1
[19] Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, özyilmaz B, Ahn J H, Hong B H and Iijima S 2010 Nat. Nanotechnol. 5 574
[20] Nakada K, Fujita M, Dresselhaus G and Dresselhau M S 1996 Phys. Rev. B 54 17954
[21] Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803
[22] Min H, Sahu B, Banerjee S K and MacDonald A H 2007 Phys. Rev. B 75 155115
[23] Castro E V, Novoselov K S, Morozov S V, Peres N M R, dos Santos J L, Nilsson J and Neto A C 2007 Phys. Rev. Lett. 99 216802
[24] Guinea F, Katsnelson M I and Geim A K 2009 Nat. Phys. 6 30
[25] Pereira V M and Neto A C 2009 Phys. Rev. Lett. 103 046801
[26] Levy N, Burke S A, Meaker K L, Panlasigui M, Zettl A, Guinea F and Crommie M F 2010 Science 329 544
[27] Bhattacharya A, Bhattacharya S and Das G P 2011 Phys. Rev. B 84 075454
[28] McCann E 2006 Phys. Rev. B 74 161403
[29] Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A and Wang F 2009 Nature 459 820
[30] Xia F, Farmer D B, Lin Y M and Avouris P 2010 Nano Lett. 10 715
[31] Barone V, Hod O and Scuseria G E Nano Lett. 6 2748
[32] Son Y W, Cohen M L and Louie S G 2006 Nature 444 347
[33] Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S and Fasel R 2010 Nature 466 470
[34] Han M Y, Zyilmaz B, Zhang Y and Kim P 2007 Phys. Rev. Lett. 98 206805
[35] Chen Z, Lin Y M, Rooks M J and Avouris P 2007 Physica E 40 228
[36] Wang X and Dai H 2010 Nat. Chem. 2 661
[37] Han M Y, Brant J C and Kim P 2010 Phys. Rev. Lett. 104 056801
[38] Gallagher P, Todd K and Goldhaber-Gordon D 2010 Phys. Rev. B 81 115409
[39] Bai J, Duan X and Huang Y 2009 Nano Lett. 9 2083
[40] Li X, Wang X, Zhang L, Lee S and Dai H 2008 Science 319 1229
[41] Wang X, Ouyang Y, Li X, Wang H, Guo J and Dai H 2008 Phys. Rev. Lett. 100 206803
[42] Campos-Delgado J, Romo-Herrera J M, Jia X, Cullen D A, Muramatsu H, Kim Y A and Terrones M 2008 Nano Lett. 8 2773
[43] Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K and Tour J M 2009 Nature 458 872
[44] Jiao L, Zhang L, Wang X, Diankov G and Dai H 2009 Nature 458 877
[45] Jiao L, Wang X, Diankov G, Wang H and Dai H 2010 Nat. Nanotechnol. 5 321
[46] Xie L, Wang H, Jin C, Wang X, Jiao L, Suenaga K and Dai H 2011 J. Am. Chem. Soc. 133 10394
[47] Tao C, Jiao L, Yazyev O V, Chen Y C, Feng J and Zhang X 2011 Nat. Phys. 7 616
[48] Bai J, Zhong X, Jiang S, Huang Y and Duan X 2010 Nat. Nanotechnol. 5 190
[49] Zeng Z, Huang X, Yin Z, Li H, Chen Y, Li H and Zhang H 2012 Adv. Mater. 24 4138
[50] Wang M, Fu L, Gan L, Zhang C, Rümmeli M, Bachmatiuk A and Liu Z 2013 Sci. Rep. 3 1
[51] Wang X R, Li X L, Zhang L, Yoon Y K, Weber P K, Wang H L, Guo J and Dai H J 2009 Science 324 768
[52] Kato T, Jiao L,Wang X,Wang H, Li X, Zhang L and Dai H 2011 Small 7 574
[53] Lin Y C, Lin C Y and Chiu P W 2010 Appl. Phys. Lett. 96 133110
[54] Wu J, Xie L, Li Y, Wang H, Ouyang Y, Guo J and Dai H 2011 J. Am. Chem. Soc. 133 19668
[55] Park S and Ruoff R S 2009 Nat. Nanotechnol. 4 217
[56] Li X, Wang H, Robinson J T, Sanchez H, Diankov G and Dai H 2009 J. Am. Chem. Soc. 131 15939
[57] Xu S, Dong J, Pan L, Que X, Zheng Y, Shi Y and Wang X 2012 Nano Res. 5 361
[58] Wei D, Liu Y, Wang Y, Zhang H, Huang L and Yu G 2009 Nano Lett. 9 1752
[59] Chen J H, Jang C, Adam S, Fuhrer M S, Williams E D and Ishigami M 2008 Nat. Phys. 4 377
[60] Love J C, Estroff L A, Kriebel J K, Nuzzo R G and Whitesides G M 2005 Chem. Rev. 105 1103
[61] Aswal D K, Lenfant S, Guerin D, Yakhmi J V and Vuillaume D 2006 Anal. Chim. Acta 568 84
[62] Park J, Jo S B, Yu Y J, Kim Y, Yang J W, Lee W H and Kim K S 2012 Adv. Mater. 24 407
[63] Sojoudi H, Baltazar J, Tolbert L M, Henderson C L and Graham S 2012 ACS Appl. Mater. Interf. 4 4781
[64] Chen J H, Jang C, Xiao S, Ishigami M and Fuhrer M S 2008 Nat. Nanotechnol. 3 206
[65] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S and Hone J 2010 Nat. Nanotechnol. 5 722
[66] Xue J, Sanchez-Yamagishi J, Bulmash D, Jacquod P, Deshpande A, Watanabe K and LeRoy B J 2011 Nat. Mater. 10 282
[67] Dean C R, Young A F, Cadden-Zimansky P,Wang L, Ren H,Watanabe K and Shepard K L 2011 Nat. Phys. 7 693
[68] Young A F, Dean C R,Wang L, Ren H, Cadden-Zimansky P,Watanabe K and Kim P 2012 Nat. Phys. 8 550
[69] Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y and Kim P 2013 Nature 497 598
[70] Ponomarenko L A, Gorbachev R V, Yu G L, Elias D C, Jalil R, Patel A A and Geim A K 2013 Nature 497 594
[71] Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K and Ashoori R C 2013 Science 340 1427
[72] Wang X, Xu J B, Wang C, Du J and Xie W 2011 Adv. Mater. 23 2464
[73] Stampfer C, G¨ttinger J, Hellmüller S, Molitor F, Ensslin K and Ihn T 2009 Phys. Rev. Lett. 102 056403
[74] Wang X, Ouyang Y, Jiao L, Wang H, Xie L, Wu J and Dai H 2011 Nat. Nanotechnol. 6 563
[75] Shimizu T, Haruyama J, Marcano D C, Kosinkin D V, Tour J M, Hirose K and Suenaga K 2010 Nat. Nanotechnol. 6 45
[76] Ataca C, Sahin H and Ciraci S Stable 2012 J. Phys. Chem. C 116 8983
[77] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y and Wang F 2010 Nano Lett. 10 1271
[78] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[79] Liu L T, Kumar S B, Ouyang Y J and Guo J 2011 IEEE Trans. Electr. Dev. 5 3042
[80] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451
[81] Radisavljevic, B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[82] Qiu H, Pan L, Yao Z, Li J, Shi Y and Wang X 2012 Appl. Phys. Lett. 100 123104
[83] Park W et al 2013 Nanotechnology 24 095202
[84] Bao W, Cai X, Kim D, Sridhara K and Fuhrer M S 2013 Appl. Phys. Lett. 102 042104
[85] Das S, Chen H Y, Penumatcha A V and Appenzeller J 2012 Nano Lett. 13 100
[86] Wang H, Yu L, Lee Y H, Shi Y, Hsu A, Chin M L and Palacios T 2012 Nano Lett. 12 4674
[87] Ghatak S, Pal A N and Ghosh 2011 ACS Nano 5 7707
[88] Kim S, Konar A, Hwang W S, Lee J H, Lee J, Yang J and Kim K 2012 Nat. Commun. 3 1011
[89] Kaasbjerg K, Thygesen K S and Jacobsen K W 2012 Phys. Rev. B 85 115317
[90] Qiu H et al 2013 Submitted
[91] Ye J T, Zhang Y J, Akashi R, Bahramy M S, Arita R and Iwasa Y 2012 Science 338 1193
[92] Zhang Y, Ye J, Matsuhashi Y and Iwasa Y 2012 Nano Lett. 12 1136
[93] Radisavljevic B and Kis A 2013 Meso. Nano. Phys. (online publication)
[94] Schwierz F 2010 Nat. Nanotechnol. 5 487
[95] Lin Y M, Valdes-Garcia A, Han S J, Farmer D B, Meric I, Sun Y and Jenkins K A 2011 Science 332 1294
[96] Liao L, Lin Y C, Bao M, Cheng R, Bai J, Liu Y and Duan X 2010 Nature 467 305
[97] Wu Y, Lin Y M, Bol A A, Jenkins K A, Xia F, Farmer D B and Avouris P 2011 Nature 472 74
[98] Bonaccorso F, Sun Z, Hasan T and Ferrari A C 2010 Nat. Photon. 4 611
[99] Mueller T, Xia F and Avouris P 2010 Nat. Photon. 4 297
[100] Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y and Zhang H 2011 ACS Nano 6 74
[101] Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L and Zhang X 2011 Nature 474 64
[102] Bao Q, Zhang H, Wang B, Ni Z, Lim C H Y X, Wang Y and Loh K P 2011 Nat. Photon. 5 411
[103] Graphene FlagshipWebsite http://www.graphene-flagship.eu/GF/index. php
[104] Britnell L, Gorbachev R V, Jalil R, Belle B D, Schedin F, Mishchenko A, Georgiou T, Katsnelson M I, Eaves L, Morozov S V, Peres N M R, Leist J, Geim A K, Novoselov K S and Ponomarenko L A 2012 Science 335 947
[105] Yang H, Heo J, Park S, Song H J, Seo D H, Byun K E and Kim K 2012 Science 336 1140
[106] Vajtai R, Lou J and Ajayan P M 2013 Nat. Nanotechnol. 8 119
[107] Georgiou T, Jalil R, Belle B D, Britnell L, Gorbachev R V, Morozov S V and Mishchenko A 2012 Nat. Nanotechnol. 8 100
[108] Yu W J, Li Z, Zhou H, Chen Y, Wang Y, Huang Y and Duan X 2012 Nat. Mater. 12 246
[109] Britnell L, Ribeiro R M, Eckmann A, Jalil R, Belle B D, Mishchenko A, Kim Y J, Gorbachev R V, Georgiou T, Morozov S V, Grigorenko A N, Geim A K, Casiraghi C, Castro Neto A H and Novoselov K S 2013 Science 340 1311
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[3] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[4] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[5] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[6] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[7] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[8] MoS2/Si tunnel diodes based on comprehensive transfer technique
Yi Zhu(朱翊), Hongliang Lv(吕红亮), Yuming Zhang(张玉明), Ziji Jia(贾紫骥), Jiale Sun(孙佳乐), Zhijun Lyu(吕智军), and Bin Lu(芦宾). Chin. Phys. B, 2023, 32(1): 018501.
[9] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[10] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[11] In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼). Chin. Phys. B, 2022, 31(9): 096802.
[12] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[13] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[14] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[15] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
No Suggested Reading articles found!