Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 097306    DOI: 10.1088/1674-1056/22/9/097306
Special Issue: TOPICAL REVIEW — Low-dimensional nanostructures and devices
TOPICAL REVIEW—Low-dimensional nanostructures and devices Prev   Next  

Proximity effects in topological insulator heterostructures

Li Xiao-Guang (李晓光)a b, Zhang Gu-Feng (张谷丰)b, Wu Guang-Fen (武光芬)a, Chen Hua (陈铧)c, Dimitrie Culcerbd, Zhang Zhen-Yu(张振宇)b
a Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
b International Center for Quantum Design of Functional Materials (ICQD)/Hefei National Laboratory for Physical Sciences at the Microscale (HFNL), University of Science and Technology of China, Hefei 230026, China;
c Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA;
d School of Physics, The University of New South Wales, Sydney 2052, Australia
Abstract  Topological insulators (TIs) are bulk insulators that possess robust helical conducting states along their interfaces with conventional insulators. A tremendous research effort has recently been devoted to TI-based heterostructures, in which conventional proximity effects give rise to a series of exotic physical phenomena. This paper reviews our recent studies on the potential existence of topological proximity effects at the interface between a topological insulator and a normal insulator or other topologically trivial systems. Using first-principles approaches, we have realized the tunability of the vertical location of the topological helical state via intriguing dual-proximity effects. To further elucidate the control parameters of this effect, we have used the graphene-based heterostructures as prototypical systems to reveal a more complete phase diagram. On the application side of the topological helical states, we have presented a catalysis example, where the topological helical state plays an essential role in facilitating surface reactions by serving as an effective electron bath. These discoveries lay the foundation for accurate manipulation of the real space properties of the topological helical state in TIbased heterostructures and pave the way for realization of the salient functionality of topological insulators in future device applications.
Keywords:  topological insulator      heterostructure      proximity effect      catalysis  
Received:  16 August 2013      Accepted manuscript online: 
PACS:  73.22.Pr (Electronic structure of graphene)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
  73.40.-c (Electronic transport in interface structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91021019, 51074151, and 11034006), the National Basic Research Program of China (Grant Nos. 2010CB923401 and 2011CB921801), USDOE (Grant No. DE-FG03-02ER45958), US National Science Foundation (Grant No. 0906025), and the BES Program of US Department of Energy (Grant No. ER45958).
Corresponding Authors:  Zhang Zhen-Yu     E-mail:  zhangzy@ustc.edu.cn

Cite this article: 

Li Xiao-Guang (李晓光), Zhang Gu-Feng (张谷丰), Wu Guang-Fen (武光芬), Chen Hua (陈铧), Dimitrie Culcer, Zhang Zhen-Yu(张振宇) Proximity effects in topological insulator heterostructures 2013 Chin. Phys. B 22 097306

[1] Thouless D J, Kohmoto M, NightingaleMP and den NijsM1982 Phys. Rev. Lett. 49 405
[2] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[3] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[4] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[5] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[6] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[7] König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
[8] Kong D and Cui Y 2011 Nat. Chem. 3 845
[9] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
[10] Stanescu T D, Sau J D, Lutchyn R M and Das S S 2010 Phys. Rev. B 81 241310
[11] Mahfouzi F, Nikoli′c B K, Chen S H and Chang C R 2010 Phys. Rev. B 82 195440
[12] Garate I and Franz M 2010 Phys. Rev. Lett. 104 146802
[13] Chang J, Jadaun P, Register L F, Banerjee S K and Sahu B 2011 Phys. Rev. B 84 155105
[14] Hutasoit J A and Stanescu T D 2011 Phys. Rev. B 84 085103
[15] Hirahara T, Bihlmayer G, Sakamoto Y, Yamada M, Miyazaki H, Kimura S I, Blügel S and Hasegawa S 2011 Phys. Rev. Lett. 107 166801
[16] Chen H, ZhuW, Xiao D and Zhang Z 2011 Phys. Rev. Lett. 107 056804
[17] Cook A and Franz M 2011 Phys. Rev. B 84 201105
[18] Zhang Q, Zhang Z, Zhu Z, Schwingenschlögl U and Cui Y 2012 ACS Nano 6 2345
[19] Nakayama K, Eto K, Tanaka Y, Sato T, Souma S, Takahashi T, Segawa K and Ando Y 2012 Phys. Rev. Lett. 109 236804
[20] Shevtsov O, Carmier P, Petitjean C, Groth C, Carpentier D andWaintal X 2012 Phys. Rev. X 2 031004
[21] Culcer D 2012 Physica E 44 860
[22] Qu F, Yang F, Shen J, Ding Y, Chen J, Ji Z, Liu G, Fan J, Jing X, Yang C and Lu L 2012 Sci. Rep. 2
[23] Zhang G, Li X, Wu G, Wang J, Culcer D, Kaxiras E and Zhang Z 2012 ArXiv:1212.1343
[24] Eremeev S V, Men’shov V N, Tugushev V V, Echenique P M and Chulkov E V 2013 ArXiv:1304.1275
[25] Ueda S, Kawakami N and Sigrist M 2013 Phys. Rev. B 87 161108
[26] Luo W and Qi X L 2013 Phys. Rev. B 87 085431
[27] Wu G, Chen H, Sun Y, Li X, Cui P, Franchini C, Wang J, Chen X Q and Zhang Z 2013 Sci. Rep. 3
[28] Björnson K and Black-Schaffer A M 2013 Phys. Rev. B 88 024501
[29] Nayak C, Simon S H, Stern A, Freedman M and Das S S 2008 Rev. Mod. Phys. 80 1083
[30] Qi X L, Li R, Zang J and Zhang S C 2009 Science 323 1184
[31] Zhang W, Yu R, Zhang H J, Dai X and Fang Z 2010 New J. Phys. 12 065013
[32] Eremeev S V, Landolt G, Menshchikova T V, Slomski B, Koroteev Y M, Aliev Z S, Babanly M B, Henk J, Ernst A, Patthey L, Eich A, Khajetoorians A A, Hagemeister J, Pietzsch O, Wiebe J, Wiesendanger R, Echenique P M, Tsirkin S S, Amiraslanov I R, Dil J H and Chulkov E V 2012 Nat. Commun. 3 635
[33] Black-Schaffer A M and Balatsky A V 2012 Phys. Rev. B 85 121103
[34] Xu S Y, Xia Y, Wray L A, Jia S, Meier F, Dil J H, Osterwalder J, Slomski B, Bansil A, Lin H, Cava R J and Hasan M Z 2011 Science 332 560
[35] Weeks C, Hu J, Alicea J, Franz M and Wu R 2011 Phys. Rev. X 1 021001
[36] Chadov S, Qi X K, KÃbler J, Fecher G H, Felser C and Zhang S C 2010 Nat. Mater. 9 541
[37] Xiao D, Yao Y, Feng W, Wen J, Zhu W, Chen X Q, Stocks G M and Zhang Z 2010 Phys. Rev. Lett. 105 096404
[38] Lin H, Wray L A, Xia Y, Xu S, Jia S, Cava R J, Bansil A and Hasan M Z 2010 Nat. Mater. 9 546
[39] Kim M, Kim C H, Kim H S and Ihm J 2012 Proc. Natl. Acad. Sci. 109 671
[40] Qi X L and Zhang S C 2010 Phys. Today 63 33
[41] Lenz K, Zander S and Kuch W 2007 Phys. Rev. Lett. 98 237201
[42] Helmes RW, Costi T A and Rosch A 2008 Phys. Rev. Lett. 101 066802
[43] Yao Y, Ye F, Qi X L, Zhang S C and Fang Z 2007 Phys. Rev. B 75 041401
[44] Neto A H C, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[45] Fu L, Kane C L and Mele E J 2007 Phys. Rev. Lett. 98 106803
[46] Hsieh D, Qian D, Wray L, Xia Y, Hor Y S, Cava R J and Hasan M Z 2008 Nature 452 970
[47] Zhang T, Cheng P, Chen X, Jia J F, Ma X, He K, Wang L, Zhang H, Dai X, Fang Z, Xie X C and Xue Q K 2009 Phys. Rev. Lett.103 266803
[48] Hsieh D, Xia Y, Qian D, Wray L, Dil J H, Meier F, Osterwalder J, Patthey L, Checkelsky J G, Ong N P, Fedorov A V, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Nature 460 1101
[49] Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2009 Science 325 178
[50] Zhang Y, He K, Chang C Z, Song C L,Wang L L, Chen X, Jia J F, Fang Z, Dai X, Shan W Y, Shen S Q, Niu Q, Qi X L, Zhang S C, Ma X C and Xue Q K 2010 Nat. Phys. 6 584
[1] Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜). Chin. Phys. B, 2023, 32(2): 020305.
[2] Transition-edge sensors using Mo/Au/Au tri-layer films
Hubing Wang(王沪兵), Yue Lv(吕越), Dongxue Li(李冬雪), Yue Zhao(赵越), Bo Gao(高波), and Zhen Wang(王镇). Chin. Phys. B, 2023, 32(2): 028501.
[3] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] MoS2/Si tunnel diodes based on comprehensive transfer technique
Yi Zhu(朱翊), Hongliang Lv(吕红亮), Yuming Zhang(张玉明), Ziji Jia(贾紫骥), Jiale Sun(孙佳乐), Zhijun Lyu(吕智军), and Bin Lu(芦宾). Chin. Phys. B, 2023, 32(1): 018501.
[6] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[7] Hexagonal boron phosphide and boron arsenide van der Waals heterostructure as high-efficiency solar cell
Yi Li(李依), Dong Wei(魏东), Gaofu Guo(郭高甫), Gao Zhao(赵高), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2022, 31(9): 097301.
[8] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[9] High Chern number phase in topological insulator multilayer structures: A Dirac cone model study
Yi-Xiang Wang(王义翔) and Fu-Xiang Li(李福祥). Chin. Phys. B, 2022, 31(9): 090501.
[10] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[11] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[12] Interfacial defect engineering and photocatalysis properties of hBN/MX2 (M = Mo, W, and X = S, Se heterostructures
Zhi-Hai Sun(孙志海), Jia-Xi Liu(刘佳溪), Ying Zhang(张颖), Zi-Yuan Li(李子源), Le-Yu Peng(彭乐宇), Peng-Ru Huang(黄鹏儒), Yong-Jin Zou(邹勇进), Fen Xu(徐芬), and Li-Xian Sun(孙立贤). Chin. Phys. B, 2022, 31(6): 067101.
[13] Effects of phosphorus doping on the physical properties of axion insulator candidate EuIn2As2
Feihao Pan(潘斐豪), Congkuan Tian(田丛宽), Jiale Huang(黄嘉乐), Daye Xu(徐大业), Jinchen Wang (汪晋辰), Peng Cheng(程鹏), Juanjuan Liu(刘娟娟), and Hongxia Zhang(张红霞). Chin. Phys. B, 2022, 31(5): 057502.
[14] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[15] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
No Suggested Reading articles found!