Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 097305    DOI: 10.1088/1674-1056/22/9/097305
Special Issue: TOPICAL REVIEW — Low-dimensional nanostructures and devices
TOPICAL REVIEW—Low-dimensional nanostructures and devices Prev   Next  

Metallic nanowires for subwavelength waveguiding and nanophotonic devices

Pan Deng (潘登), Wei Hong (魏红), Xu Hong-Xing (徐红星)
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Plasmonics is a rapidly developing field concerning light manipulation at the nanoscale with many potential applications, of which plasmonic circuits are promising for future information technology. Plasmonic waveguides are fundamental elements for constructing plasmonic integrated circuits. Among the proposed different plasmonic waveguides, metallic nanowires have drawn much attention due to the highly confined electromagnetic waves and relatively low propagation loss. Here we review the recent research progress in the waveguiding characteristics of metallic nanowires and nanowire-based nanophotonic devices. Plasmon modes of both cylindrical and pentagonal metallic nanowires with and without substrate are discussed. Typical methods for exciting and detecting the plasmons in metallic nanowires are briefly summarized. Because of the multimode characteristic, the plasmon propagation and emission in the nanowire have many unique properties, benefiting the design of plasmonic devices. A few nanowire-based devices are highlighted, including quarter-wave plate, Fabry-Pérot resonator, router and logic gates.
Keywords:  surface plasmons      waveguide      circuit      nanowire  
Received:  12 August 2013      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  42.79.Gn (Optical waveguides and couplers)  
  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
  78.67.Uh (Nanowires)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2009CB930700), the National Natural Science Foundation of China (Grant Nos. 11134013, 11227407 and 11004237), and the Knowledge Innovation Project of Chinese Academy of Sciences (Grant No. KJCX2-EW-W04).
Corresponding Authors:  Xu Hong-Xing     E-mail:  hxxu@iphy.ac.cn

Cite this article: 

Pan Deng (潘登), Wei Hong (魏红), Xu Hong-Xing (徐红星) Metallic nanowires for subwavelength waveguiding and nanophotonic devices 2013 Chin. Phys. B 22 097305

[1] Kok P, Munro W J, Nemoto K, Ralph T C, Jonathan D P and Milburn G J 2007 Rev. Mod. Phys. 79 135
[2] Xu H X, Aizpurua J, Käll M and Apell P 2000 Phys. Rev. E 62 4318
[3] Tong L M, Wei H, Zhang S P, Li Z P and Xu H X 2013 Phys. Chem. Chem. Phys. 15 4100
[4] Maier S 2007 Plasmonics: Fundamentals and Applications (Berlin: Springer)
[5] Steinberger B, Hohenau A, Ditlbacher H, Stepanov A L, Drezet A, Aussenegg F R, Leitner A and Krenn J R 2006 Appl. Phys. Lett. 88 094104
[6] Holmgaard T and Bozhevolnyi S 2007 Phys. Rev. B 75 245405
[7] Veronis G and Fan S 2005 Opt. Lett. 30 3359
[8] Pile D F and Gramotnev D K 2004 Opt. Lett. 29 1069
[9] Bozhevolnyi S I, Volkov V S, Devaux E and Ebbesen T W 2005 Phys. Rev. Lett. 95 046802
[10] Pile D F P, Ogawa T, Gramotnev D K, Okamoto T, Haraguchi M, Fukui M and Matsuo S 2005 Appl. Phys. Lett. 87 061106
[11] Moreno E, Rodrigo S G, Bozhevolnyi S I, Martín-Moreno L and García-Vidal F J 2008 Phys. Rev. Lett. 100 023901
[12] Dickson R M and Lyon L A 2000 J. Phys. Chem. B 104 6095
[13] Sun Y G and Xia Y N 2002 Adv. Mater. 14 833
[14] Jackson J D 1999 Classical Electrodynamics (New York: Wiley)
[15] Chang D E, Sfrensen A S, Hemmer P R and Lukin M D 2007 Phys. Rev. B 76 035420
[16] Zhang S P, Wei H, Bao K, Hakanson U, Halas N J, Nordlander P and Xu H X 2011 Phys. Rev. Lett. 107 096801
[17] Marcuse D 1991 Theory of Dielectric Optical Waveguides (San Diego: Academic Press)
[18] Song M X, Bouhelier A, Bramant P, Sharma J, Dujardin E, Zhang D G and Colas-des-Francs G 2011 ACS Nano. 5 5874
[19] Zou C L, Sun F W, Xiao Y F, Dong C H, Chen X D, Cui J M, Gong Q, Han Z F and Guo G C 2010 Appl. Phys. Lett. 97 183102
[20] Zhang S P and Xu H X 2012 ACS Nano 6 8128
[21] Wei H, Zhang S P, Tian X R and Xu H X 2013 Proc. Natl. Acad. Sci. 110 4494
[22] Hu J and Menyuk C R 2009 Adv. Opt. Photon. 1 58
[23] Prodan E, Radloff C, Halas N J and Nordlander P A 2003 Science 302 419
[24] Sanders A W, Routenberg D A, Wiley B J, Xia Y N, Dufresne E R and Reed M A 2006 Nano Lett. 6 1822
[25] Hao F, Larsson E M, Ali T A, Sutherland D S and Nordlander P 2008 Chem. Phys. Lett. 458 262
[26] Li Z P, Bao K, Fang Y R, Huang Y Z, Nordlander P and Xu H X 2010 Nano Lett. 10 1831
[27] Li Z P, Bao K, Fang Y R, Guan Z Q, Halas N J, Nordlander P and Xu H X 2010 Phys. Rev. B 82 241402
[28] Knight M W, Grady N K, Bardhan R, Hao F, Nordlander P and Halas N J 2007 Nano Lett. 7 2346
[29] Fang Z Y, Fan L R, Lin C F, Zhang D, Meixner A J and Zhu X 2011 Nano Lett. 11 1676
[30] Raether H 1988 Surface Plasmons on Smooth and Rough Surfaces and on Gratings (New York: Springer Verlag)
[31] Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg F R and Krenn J R 2005 Phys. Rev. Lett. 95 257403
[32] Wang W H, Yang Q, Fan F R, Xu H X and Wang Z L 2011 Nano Lett. 11 1603
[33] Li Q, Wang S S, Chen Y T, Yan M, Tong L M and Qiu M 2011 IEEE J. Sel. Top in Quantum Electron 17 1107
[34] Liu N, Li Z P and Xu H X 2012 Small 8 2641
[35] Ritchie R H 1957 Phys. Rev. 106 874
[36] Powell C J and Swan J B 1959 Phys. Rev. 115 869
[37] Teng Y and Stern E 1967 Phys. Rev. Lett. 19 511
[38] Heitmann D 1977 J. Phys. C: Solid State Phys. 10 397
[39] Bashevoy M V, Jonsson F, Krasavin A V, Zheludev N I, Chen Y and Stockman M I 2006 Nano Lett. 6 1113
[40] Lambe J and McCarthy S L 1976 Phys. Rev. Lett. 37 923
[41] Gimzewski J K, Reihl B, Coombs J H and Schlittler R R 1988 Z. Phys. B 72 497
[42] Aizpurua J, Hoffmann G, Apell S P and Berndt R 2002 Phys. Rev. Lett. 89 156803
[43] CaiW, Sainidou R, Xu J, Polman A and García de Abajo F J 2009 Nano Lett. 9 1176
[44] Bharadwaj P, Bouhelier A and Novotny L 2011 Phys. Rev. Lett. 106 226802
[45] Wei H, Li Z P, Tian X R, Wang Z X, Cong F Z, Liu N, Zhang S P, Nordlander P, Halas N J and Xu H X 2011 Nano Lett. 11 471
[46] Wild B, Cao L, Sun Y, Khanal B P, Zubarev E R, Gray S K, Scherer N F and Pelton M 2012 ACS Nano. 6 472
[47] Solis D, Chang W S, Khanal B P, Bao K, Nordlander P, Zubarev E R and Link S 2010 Nano Lett. 10 3482
[48] Shegai T, Miljkovic V D, Bao K, Xu H X, Nordlander P, Johansson P and Käll M 2011 Nano Lett. 11 706
[49] Ma Y G, Li X Y, Yu H K, Tong L M, Gu Y and Gong Q H 2010 Opt. Lett. 35 1160
[50] Bergman D J and Stockman M I 2003 Phys. Rev. Lett. 90 027402
[51] De Leon I and Berini P 2010 Nat. Photon. 4 382
[52] Liu N, Wei H, Li J, Wang Z X, Tian X R, Pan A L and Xu H X 2013 Sci. Rep. 3 1967
[53] Guo X, Qiu M, Bao J M, Wiley B J, Yang Q, Zhang X N, Ma Y G, Yu H K and Tong L M 2009 Nano Lett. 9 4515
[54] Dorfmuller J, Vogelgesang R, Khunsin W, Rockstuhl C, Etrich C and Kern K 2010 Nano Lett. 10 3596
[55] Li Z P, Hao F, Huang Y Z, Fang Y R, Nordlander P and Xu H X 2009 Nano Lett. 9 4383
[56] Drezet A, Genet C and Ebbesen TW2008 Phys. Rev. Lett. 101 043902
[57] Yu N, Aieta F, Genevet P, Kats M A, Gaburro Z and Capasso F 2012 Nano Lett. 12 6328
[58] Fang Y R, Li Z P, Huang Y Z, Zhang S P, Nordlander P, Halas N J and Xu H X 2010 Nano Lett. 10 1950
[59] Wei H, Wang Z X, Tian X R, Käll M and Xu H X 2011 Nat. Commun. 2 387
[1] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[2] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅),Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[3] Observation of size-dependent boundary effects in non-Hermitian electric circuits
Luhong Su(苏鹭红), Cui-Xian Guo(郭翠仙), Yongliang Wang(王永良), Li Li(李力), Xinhui Ruan(阮馨慧), Yanjing Du(杜燕京), Shu Chen(陈澍), and Dongning Zheng(郑东宁). Chin. Phys. B, 2023, 32(3): 038401.
[4] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[5] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[6] A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
Kang Yang(杨康), Huiqing Hu(胡回清), Jiaojiao Wang(王娇娇), Lingling Deng(邓玲玲), Yunqing Lu(陆云清), and Jin Wang(王瑾). Chin. Phys. B, 2023, 32(2): 024214.
[7] Realization of the iSWAP-like gate among the superconducting qutrits
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(2): 020306.
[8] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[9] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[10] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[11] Second harmonic generation from precise diamond blade diced ridge waveguides
Hui Xu(徐慧), Ziqi Li(李子琦), Chi Pang(逄驰), Rang Li(李让), Genglin Li(李庚霖), Sh. Akhmadaliev, Shengqiang Zhou(周生强), Qingming Lu(路庆明), Yuechen Jia(贾曰辰), and Feng Chen(陈峰). Chin. Phys. B, 2022, 31(9): 094209.
[12] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[13] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[14] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[15] Sound-transparent anisotropic media for backscattering-immune wave manipulation
Wei-Wei Kan(阚威威), Qiu-Yu Li(李秋雨), and Lei Pan(潘蕾). Chin. Phys. B, 2022, 31(8): 084302.
No Suggested Reading articles found!