Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 097502    DOI: 10.1088/1674-1056/22/9/097502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Preparation of gold tetrananocages and their photothermal effect

Yin Nai-Qiang (尹乃强)a, Liu Ling (刘玲)a, Lei Jie-Mei (雷洁梅)a, Jiang Tong-Tong (蒋童童)a, Zhu Li-Xin (朱立新)b, Xu Xiao-Liang (许小亮)a
a Department of Physics, University of Science and Technology of China, Hefei 230026, China;
b Center Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
Abstract  A gold tetrahedral nanocage, i.e., a tetrananocage, that converts near-infrared (NIR) light into heat was fabricated by using a simple method. Silver tetrahedra with good homogeneity and dispersity were synthesized by a hydrothermal route. Gold tetrananocages were obtained using a galvanic replacement reaction between Ag tetrahedra and HAuCl4 solution. The surface plasmon resonance (SPR) of gold tetrananocages was tuned from 412 nm to 850 nm through controlling the volume of HAuCl4 solution added. This Au tetrananocage can effectively convert NIR light into heat when the SPR couples with the exciting light. When cancer cells are cultured with the gold tetrananocages for several hours and irradiated, the gold tetrananocages destroy the cancer cells effectively and demonstrate themselves to be a good candidate for combating cancer.
Keywords:  tetrananocage      photothermal effect      nanoparticles      near-infrared radiation  
Received:  13 January 2013      Revised:  18 April 2013      Accepted manuscript online: 
PACS:  75.75.-c (Magnetic properties of nanostructures)  
  78.20.nb (Photothermal effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51272246 and 81172082) and the Fundamental Research Funds for the Central Universities of China (Grant No. 2030000001).
Corresponding Authors:  Zhu Li-Xin, Xu Xiao-Liang     E-mail:  lx-zhu@163.com; xlxu@ustc.edu.cn

Cite this article: 

Yin Nai-Qiang (尹乃强), Liu Ling (刘玲), Lei Jie-Mei (雷洁梅), Jiang Tong-Tong (蒋童童), Zhu Li-Xin (朱立新), Xu Xiao-Liang (许小亮) Preparation of gold tetrananocages and their photothermal effect 2013 Chin. Phys. B 22 097502

[1] Chen J Y, Wiley B, Li Z Y, Campbell D, Saeki F, Cang H, Au L, Lee J, Li X D and Xia Y N 2005 Adv. Mater. 17 2255
[2] Tian Q W, Tang M H, Sun Y G, Zou R j, Chen Z G, Zhu M F, Yang S P, Wang J L, Wang J H and Hu J Q 2011 Adv. Mater. 23 3542
[3] Fan Z, Shelton M, Singh A K, Senapati D, Khan S A and Ray P C 2012 ACS Nano 6 1065
[4] Chen W R, Adams R L, Carubelli R and Nordquist R E 1997 Cancer Lett. 115 25
[5] Chen W R, Adams R L, Higgins A K, Bartels K E and Nordquist R E 1996 Cancer Lett. 98 169
[6] Bardhan R, Chen W X, Perez-Torres C, Bartels M, Huschka R M, Zhao L L, Morosan E, Pautler R G, Joshi A and Halas N J 2009 Adv. Funct. Mater. 19 3901
[7] Cho E C, Zhang Q and Xia Y N 2011 Nature Nanotechnology 6 385
[8] Lukianova-Hleb E Y, Hanna E Y, Hafner J H and Lapotko D O 2010 Nanotechnology 21 085102
[9] Cheng P H, Li D S, Yuan Z Z, Chen P L and Yang D R 2008 Appl. Phys. Lett. 92 041119
[10] Chen Y, Munechika K, Plante I J, Munro A M, Skrabalak S E, Xia O and Ginger D S 2008 Appl. Phys. Lett. 93 053106
[11] Yin N Q, Liu L, Lei J M, Liu Y S, Gong M G, Wu Y Z, Zhu L X and Xu X L 2012 Chin. Phys. B 21 116101
[12] Pompa P P, Martiradonna L, Torre A D, Sala F D, Manna L, Vittorio M D, Calabi F, Cingolani R and Rinaldi R 2006 Nat. Nanotechnol. 1 126
[13] Zhao C H, Zhang B P and Shang P P 2009 Chin. Phys. B 18 5539
[14] Liu L, Xu X L, Lei J M and Yin N Q 2012 Chin. Phys. Lett. 29 017801
[15] Kwon M K, Kim J Y, Kim B H, Park I K, Cho C Y, Byeon C C and Park S J 2008 Adv. Mater. 20 1253
[16] Cho C Y, Kwon M K, Lee S J, Han S H, Kang J W, Kang S E, Lee D Y and Park S J 2010 Nanotechnology 21 205201
[17] Hirsch L R, Stafford R J, Bankson J A, Sershen S R, Rivera B, Price R E, Hazle J D, Halas N J and West J L 2003 Proc. Natl. Acad. Sci. USA 100 13549
[18] Huang X H, El-Sayed I H, Wei Q and El-Sayed M A 2006 J. Am. Chem. Soc. 128 2115
[19] Kuo W S, Chang C N, Chang Y T, Yang M H, Chien Y H, Chen S J and Yeh C S 2010 Angew. Chem. Int. Ed. 122 2771
[20] Chen J Y, Glaus C, Laforest R, Zhang Q, Yang M X, Gidding M, Welch M J and Xia Y N 2010 Small 6 811
[21] Hu K W, Huang C C, Hwu J R, Su W C, Shieh D B and Yeh C S 2008 Chem. Eur. J. 14 2956
[22] Liu H Y, Chen D, Tang F Q, Du G J, Li L L, Meng X W, Liang W, Zhang Y E, Teng X and Li Y 2008 Nanotechnology 19 455101
[23] Wang S T, Chen K J, Wu T H, Wang H, Lin W Y, Ohashi M, Chiou P Y and Tseng H R 2010 Angew. Chem. Int. Ed. 49 3777
[24] Kim J, Park S, Lee J E, Jin S M, Lee J H, Lee I S, Yang I, Kim J S, Kim S K, Cho M H and Hyeon T 2006 Angew. Chem. Int. Ed. 45 7754
[25] Kim J, Lee J E, Lee J, Jang Y, Kim S W, An K, Yu J H and Hyeon T 2006 Angew. Chem. Int. Ed. 45 4789
[26] Wang C G, Chen J J, Talavage T and Irudayaraj J 2009 Angew. Chem. Int. Ed. 48 2759
[27] Skrabalak S E, Chen J Y, Sun Y G, Lu X M, Au L, Cobley C M and Xia Y N 2008 Acc. Chem. Res. 41 1587
[28] Hu M, Chen J Y, Li Z Y, Au L, Hartland G V, Li X D, Marquez M and Xia Y N 2006 Chem. Soc. Rev. 35 1084
[29] Skrabalak S E, Au L, Li X D and Xia Y N 2007 Nature Protocols 2 2182
[30] Gao Y, Jiang P, Song L, Wang J X, Liu L F, Liua D F, Xiang Y J, Zhang Z X, Zhao X W, Dou X Y, Luo S D, Zhou W Y and Xie S S 2006 Journal of Crystal Growth 289 376
[31] Sun Y G and Xia Y N 2004 J. Am. Chem. Soc. 126 3892
[32] Lin W, Warren T H, Nuzzo R G and Girolami G S 1993 J. Am. Chem. Soc. 115 11644
[33] Sieradzki K J 1993 Electrochem. Soc. 140 2868
[34] Tsay J M, Pflughoefft M, Bentolila L A and Weiss S 2004 J. Am. Chem. Soc. 126 1926
[35] Roti J L 2008 Int. J. Hyperthermia 24 3
[1] Reconstruction and functionalization of aerogels by controlling mesoscopic nucleation to greatly enhance macroscopic performance
Chen-Lu Jiao(焦晨璐), Guang-Wei Shao(邵光伟), Yu-Yue Chen(陈宇岳), and Xiang-Yang Liu(刘向阳). Chin. Phys. B, 2023, 32(3): 038103.
[2] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[3] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[4] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[5] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[6] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[7] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[8] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[9] Transmembrane transport of multicomponent liposome-nanoparticles into giant vesicles
Hui-Fang Wang(王慧芳), Chun-Rong Li(李春蓉), Min-Na Sun(孙敏娜), Jun-Xing Pan(潘俊星), and Jin-Jun Zhang(张进军). Chin. Phys. B, 2022, 31(4): 048703.
[10] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[11] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[12] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[13] Influences of nanoparticles and chain length on thermodynamic and electrical behavior of fluorine liquid crystals
Ines Ben Amor, Lotfi Saadaoui, Abdulaziz N. Alharbi, Talal M. Althagafi, and Taoufik Soltani. Chin. Phys. B, 2022, 31(10): 104202.
[14] Lattice plasmon mode excitation via near-field coupling
Yun Lin(林蕴), Shuo Shen(申烁), Xiang Gao(高祥), and Liancheng Wang(汪炼成). Chin. Phys. B, 2022, 31(1): 014214.
[15] Stability of liquid crystal systems doped with γ-Fe2O3 nanoparticles
Xu Zhang(张旭), Ningning Liu(刘宁宁), Zongyuan Tang(唐宗元), Yingning Miao(缪应宁), Xiangshen Meng(孟祥申), Zhenghong He(何正红), Jian Li(李建), Minglei Cai(蔡明雷), Tongzhou Zhao(赵桐州), Changyong Yang(杨长勇), Hongyu Xing(邢红玉), and Wenjiang Ye(叶文江). Chin. Phys. B, 2021, 30(9): 096101.
No Suggested Reading articles found!