Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 090505    DOI: 10.1088/1674-1056/22/9/090505
GENERAL Prev   Next  

Nonautonomous deformed solitons in a Bose-Einstein condensate

Li Ze-Jun (李泽军), Hai Wen-Hua (海文华), Deng Yan (邓艳)
Department of Physics and Key Laboratory of Low-Dimensional Quantum Structure and Quantum Control of Ministry of Education, Hunan Normal University, Changsha 410081, China
Abstract  We study exact single-soliton solutions of an attractive Bose-Einstein condensate governed by a one-dimensional nonautonomous Gross-Pitaevskii system. For several different forms of time-dependent atom-atom interaction and external parabolic potential which satisfy the exact integrability scenario, we construct a set of new analytical nonautonomous deformed-soliton solutions, including the macroscopic wave function and the position of soliton’s center of mass. The soliton characteristics are modulated by the external field parameters and deformation factors related to the number of the condensed atoms and the initial conditions. The results suggest a simple and effective method for experimentally generating matter-wave deformed solitons and manipulating their motions.
Keywords:  Bose-Einstein condensate      nonautonomous system      deformed soliton  
Received:  21 January 2013      Revised:  08 April 2013      Accepted manuscript online: 
PACS:  05.45.Yv (Solitons)  
  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  03.65.Ge (Solutions of wave equations: bound states)  
  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11175064).
Corresponding Authors:  Hai Wen-Hua     E-mail:  whhai2005@yahoo.com.cn

Cite this article: 

Li Ze-Jun (李泽军), Hai Wen-Hua (海文华), Deng Yan (邓艳) Nonautonomous deformed solitons in a Bose-Einstein condensate 2013 Chin. Phys. B 22 090505

[1] Kartashov Y V, Malomed B A and Torner L 2011 Rev. Mod. Phys. 83 247
[2] Strecker K E, Partridge G B, Truscott A G and Hulet R G 2002 Nature 417 150
[3] Dutton Z, Budde M, Slowe C and Hau L V 2001 Science 293 663
[4] Yan J R and Zhou J 2012 Chin. Phys. B 21 060304
[5] Denschlag J, Simsarian J E, Feder D L, Clark C W, Collins L A, Cubizolles J, Deng L, Haglay E W, Helmerson K, Reinhardt W P, Rolston S L, Schnerder B I and Phillips W D 2000 Science 287 97
[6] Eiermann B, Anker Th, Albiez M, Taglieber M, Treutlein P, Marzlin K P and Oberthaler M K 2004 Phys. Rev. Lett. 92 230401
[7] Song C S, Li J and Zong F D 2012 Chin. Phys. B 21 020306
[8] Yao S F, Li Q Y and Li Z D 2011 Chin. Phys. B 20 110307
[9] Li J H and Li Z J 2011 Chin. Phys. B 20 100501
[10] Tang Y, Jin J and Zheng R J 2006 Chin. Phys. B 15 1960
[11] Huang G, Velarde M G and Makarov V A 2001 Phys. Rev. A 64 013617
[12] Burger S, Carr L D, Öhberg P, Sengstock K and Sanpera A 2002 Phys. Rev. A 65 043611
[13] Chong G S, Hai W H and Xie Q T 2003 Chin. Phys. Lett. 20 2098
[14] Shi Y R, Liu C B, Wang G H and Zhou Z G 2012 Chin. Phys. B 21 120307
[15] Zhao L, Yang J, Xie Q Y and Tian M 2012 Chin. Phys. B 21 090304
[16] Poletti D, Alexander T J, Ostrovskaya E A, Li B W and Kivshar Y S 2008 Phys. Rev. Lett. 101 150403
[17] Martin A D, Adams C S and Gardiner S A 2007 Phys. Rev. Lett. 98 020402
[18] Fu L B, Liu J, Zhao H and Wang G F 2005 Acta Phys. Sin. 54 5003 (in Chinese)
[19] Khawaja U Al 2007 Phys. Rev. E 75 066607
[20] Khawaja U Al 2006 J. Phys. A 39 9679
[21] Khawaja U Al 2009 J. Phys. A 42 265206
[22] Liang Z X, Zhang Z D and Liu W M 2005 Phys. Rev. Lett. 94 050402
[23] Degasperis A 2010 J. Phys. A 43 434001
[24] Hai W H, Xie Q T and Rong S G 2011 Eur. Phys. J. D 61 431
[25] Hai W H, Li Y, Xia B L and Luo X B 2005 Europhys. Lett. 71 28
[26] Serkin V N, Hasegawa A and Belyaeva T L 2007 Phys. Rev. Lett. 98 074102
[27] Serkin V N, Hasegawa A and Belyaeva T L 2010 Phys. Rev. A 81 023610
[28] Kumar V R, Radha R and Panigrahi P K 2008 Phys. Rev. A 77 023611
[29] Chen H H and Liu C S 1976 Phys. Rev. Lett. 37 693
[30] Belmonte-Beitia J and Cuevas J 2009 J. Phys. A 42 165201
[31] Chong G and Hai W 2007 J. Phys. B 40 211
[32] Yaroslav V K, Malomed B A and Torner L 2011 Rev. Mod. Phys. 83 247
[33] Kivshar Yuri S and Malomed B A 1989 Rev. Mod. Phys. 61 763
[34] Hermann A H, William S and Wong W S 1996 Rev. Mod. Phys. 68 423
[35] Hasegawa A and Kodama Y 1995 Solitons in Optical Communication (Oxford: Clarendon Press)
[36] Li Z J, Hai W, Deng Y and Xie Q 2012 J. Phys. A 45 435003
[37] Hai W H, Lee C H and Chong G S 2004 Phys. Rev. A 70 053621
[38] Hai W H, Xie Q T and Fang J S 2005 Phys. Rev. A 72 012116
[39] Hai W H, Huang S X and Gao K L 2003 J. Phys. B 36 3055
[40] Rietmann M, Carretero-González R and Chacón R 2011 Phys. Rev. A 83 053617
[41] Inouye S, Andrews M R, Stenger J, Miesner H J, Stamper-Kurn D M and Ketterle W 1998 Nature 392 151
[42] He X G, Zhao D, Li L and Luo H G 2009 Phys. Rev. E 79 056610
[43] Hiroki S and Masahito U 2003 Phys. Rev. Lett. 90 040403
[44] Nozaki K and Bekki N 1983 Phys. Rev. Lett. 50 1226
[45] Moon H T and Goldman M V 1984 Phys. Rev. Lett. 53 1821
[46] Zhu Q Q, Hai W H and Rong S G 2009 Phys. Rev. E 80 016203
[47] Zhou Z, Hai W H, Deng Y and Xie Q T 2012 Chaos Soliton. Fract. 45 1423
[48] Lee C H, Hai W H, Shi L, Zhu X W and Gao K L 2001 Phys. Rev. A 64 053604
[49] Hai W H, Lee C H, Chong G S and Shi L 2002 Phys. Rev. E 66 026202
[50] Luo X B, Xia X W and Zhang X F 2010 Chin. Phys. Lett. 27 040302
[51] Wang Z X, Ni Z G, Cong F Z, Liu X S and Chen L 2010 Chin. Phys. B 19 113205
[1] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[2] Superfluid to Mott-insulator transition in a one-dimensional optical lattice
Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
[3] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[4] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[5] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[6] Spin current in a spinor Bose-Einstein condensate induced by a gradient magnetic field
Li Tian(田丽), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Wenliang Liu(刘文良), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(11): 110302.
[7] Dynamics of bright soliton in a spin-orbit coupled spin-1 Bose-Einstein condensate
Hui Guo(郭慧), Xu Qiu(邱旭), Yan Ma(马燕), Hai-Feng Jiang(姜海峰), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2021, 30(6): 060310.
[8] Dynamical stability of dipolar condensate in a parametrically modulated one-dimensional optical lattice
Ji-Li Ma(马吉利), Xiao-Xun Li(李晓旬), Rui-Jin Cheng(程瑞锦), Ai-Xia Zhang(张爱霞), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(6): 060307.
[9] Spin-orbit-coupled spin-1 Bose-Einstein condensates confined in radially periodic potential
Ji Li(李吉), Tianchen He(何天琛), Jing Bai(白晶), Bin Liu(刘斌), and Huan-Yu Wang(王寰宇). Chin. Phys. B, 2021, 30(3): 030302.
[10] Quantum reflection of a Bose-Einstein condensate with a dark soliton from a step potential
Dong-Mei Wang(王冬梅), Jian-Chong Xing(邢健崇), Rong Du(杜荣), Bo Xiong(熊波), and Tao Yang(杨涛). Chin. Phys. B, 2021, 30(12): 120303.
[11] Merging and splitting dynamics between two bright solitons in dipolar Bose-Einstein condensates
Xin Li(李欣), Peng Gao(高鹏), Zhan-Ying Yang(杨战营), and Wen-Li Yang(杨文力). Chin. Phys. B, 2021, 30(12): 120501.
[12] Nonlinear dynamical stability of gap solitons in Bose-Einstein condensate loaded in a deformed honeycomb optical lattice
Hongjuan Meng(蒙红娟), Yushan Zhou(周玉珊), Xueping Ren(任雪平), Xiaohuan Wan(万晓欢), Juan Zhang(张娟), Jing Wang(王静), Xiaobei Fan(樊小贝), Wenyuan Wang(王文元), and Yuren Shi(石玉仁). Chin. Phys. B, 2021, 30(12): 126701.
[13] Adjustable half-skyrmion chains induced by SU(3) spin-orbit coupling in rotating Bose-Einstein condensates
Li Wang(王力), Ji Li(李吉), Xiao-Lin Zhou(周晓林), Xiang-Rong Chen(陈向荣), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2021, 30(11): 110312.
[14] Spinor F=1 Bose-Einstein condensates loaded in two types of radially-periodic potentials with spin-orbit coupling
Ji-Guo Wang(王继国), Yue-Qing Li(李月晴), Han-Zhao Tang(唐翰昭), and Ya-Fei Song(宋亚飞). Chin. Phys. B, 2021, 30(10): 106701.
[15] Simple and robust method for rapid cooling of 87Rb to quantum degeneracy
Chun-Hua Wei(魏春华), Shu-Hua Yan(颜树华). Chin. Phys. B, 2020, 29(6): 064208.
No Suggested Reading articles found!