Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 088101    DOI: 10.1088/1674-1056/22/8/088101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

White electroluminescence of n-ZnO:Al/p-diamond heterostructure devices

Yang Can (杨灿), Wang Xiao-Ping (王小平), Wang Li-Jun (王丽军), Pan Xiu-Fang (潘秀芳), Li Song-Kun (李松坤), Jing Long-Wei (井龙伟)
College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract  An n-ZnO:Al/p-boron-doped diamond heterostructure electroluminescent device is produced, and a rectifying behavior can be observed. The electroluminescence spectrum at room temperature exhibits two visible bands centred at 450 nm-485 nm (blue emission) and 570 nm-640 nm (yellow emission). Light emission with a luminance of 15 cd/m2 is observed from the electroluminescent device at a forward applied voltage of 85 V, which is distinguished from white light by the naked eye.
Keywords:  boron-doped diamond film      ZnO:Al      heterojunction      electroluminescence  
Received:  05 January 2013      Revised:  27 February 2013      Accepted manuscript online: 
PACS:  81.05.ug (Diamond)  
  78.60.Fi (Electroluminescence)  
  77.55.hf (ZnO)  
  68.55.-a (Thin film structure and morphology)  
Fund: Project supported by the Shanghai Human Resources and Social Security Bureau, China (Grant No. 2009023).
Corresponding Authors:  Wang Xiao-Ping     E-mail:  wxpchina@sohu.com

Cite this article: 

Yang Can (杨灿), Wang Xiao-Ping (王小平), Wang Li-Jun (王丽军), Pan Xiu-Fang (潘秀芳), Li Song-Kun (李松坤), Jing Long-Wei (井龙伟) White electroluminescence of n-ZnO:Al/p-diamond heterostructure devices 2013 Chin. Phys. B 22 088101

[1] Klein C A 2002 Diamond Related Mater. 11 218
[2] Taniguchi Y, Hirabayashi K, Ikoma K, Kurihara N and Matsushima M 1989 Jpn. J. Appl. Phys. 28 L1848
[3] Wang X P, Wang L J, Zhang B L, Yao N, Liang E J, Zhang L, Ma H Z, Chen G P, Wang J E, Li G T, Li W Q, Yang S E and Bian C 2003 Semicond. Sci. Technol. (UK) 18 144
[4] Milos N 2005 Semicond. Sci. Technol. (UK) 20 R19
[5] Zhang S, Wang X P, Wang L J, Zhu Y Z, Mei C Y, Liu X X, Li H H and Gu Y Z 2010 Chin. Phys. B 19 097805
[6] Wang Q L, Lü X Y, Li L A, Cheng S H and Li H D 2010 Chin. Phys. Lett. 27 047802
[7] Wang X P, Wang Z, Wang L J and Mei C Y 2011 Chin. Phys. B 20 105203
[8] Huang J, Wang L J, Tang K, Zhang J J, Xia Y B and Lu X G 2012 Appl. Sur. Sci. 258 2010
[9] Sang D D, Li H D, Cheng S H, Wang Q L, Yu Q and Yang Y Z 2012 J. Appl. Phys. 112 036101
[10] Vinodkumar R, Navas I, Chalana S R, Gopchandran K G, Ganesan V, Philip Reji, Sudheer S K and Mahadevan Pillai V P 2010 Appl. Sur. Sci. 257 708
[11] Wu X L, Siu G G, Fu C L and Ong H C 2001 Appl. Phys. Lett. 78 2285
[12] Look C D 2001 Mater. Sci. Eng. B 80 383
[13] Liu Y D, Li Q and Shao H L 2009 J. Alloys Compd. 485 529
[14] Wang M, Lee K E, Hahn S H, Kim E J, Kim S, Chung J S, Shin E W and Park C 2007 Mater. Lett. 61 1118
[15] Wang C X, Yang G W, Gao C X, Liu H W, Han Y H, Luo J F and Zou G T 2004 Carbon 42 317
[16] Wang F F, Cao L, Liu R B, Pan A L and Zou B S 2007 Chin. Phys. 16 1790
[1] Design and research of normally-off β-Ga2O3/4H-SiC heterojunction field effect transistor
Meixia Cheng(程梅霞), Suzhen Luan(栾苏珍), Hailin Wang(王海林), and Renxu Jia(贾仁需). Chin. Phys. B, 2023, 32(3): 037302.
[2] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[3] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[4] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[5] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[6] High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
[7] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[8] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[9] Angular dependence of proton-induced single event transient in silicon-germanium heterojunction bipolar transistors
Jianan Wei(魏佳男), Yang Li(李洋), Wenlong Liao(廖文龙), Fang Liu(刘方), Yonghong Li(李永宏), Jiancheng Liu(刘建成), Chaohui He(贺朝会), and Gang Guo(郭刚). Chin. Phys. B, 2022, 31(8): 086106.
[10] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[11] An electromagnetic simulation assisted small signal modeling method for InP double-heterojunction bipolar transistors
Yanzhe Wang(王彦喆), Wuchang Ding(丁武昌), Yongbo Su(苏永波), Feng Yang(杨枫),Jianjun Ding(丁建君), Fugui Zhou(周福贵), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(6): 068502.
[12] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
[13] A broadband self-powered UV photodetector of a β-Ga2O3/γ-CuI p-n junction
Wei-Ming Sun(孙伟铭), Bing-Yang Sun(孙兵阳), Shan Li(李山), Guo-Liang Ma(麻国梁), Ang Gao(高昂), Wei-Yu Jiang(江为宇), Mao-Lin Zhang(张茂林), Pei-Gang Li(李培刚), Zeng Liu(刘增), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(2): 024205.
[14] SnO2/Co3O4 nanofibers using double jets electrospinning as low operating temperature gas sensor
Zhao Wang(王昭), Shu-Xing Fan(范树兴), and Wei Tang(唐伟). Chin. Phys. B, 2022, 31(2): 028101.
[15] Skyrmion transport driven by pure voltage generated strain gradient
Shan Qiu(邱珊), Jia-Hao Liu(刘嘉豪), Ya-Bo Chen(陈亚博), Yun-Ping Zhao(赵云平), Bo Wei(危波), and Liang Fang(方粮). Chin. Phys. B, 2022, 31(11): 117701.
No Suggested Reading articles found!