Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 085203    DOI: 10.1088/1674-1056/22/8/085203
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Numerical study on the electron-wall interaction in a Hall thruster with segmented electrodes placed at the channel exit

Qing Shao-Wei (卿绍伟)a, E Peng (鄂鹏)b, Duan Ping (段萍)c, Xu Dian-Guo (徐殿国)b
a Power Engineering Institute, Chongqing University, Chongqing 400044, China;
b Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150001, China;
c School of Physics, Dalian Maritime University, Dalian 116026, China
Abstract  Electron-wall interaction is always recognized as an important physical problem because of its remarkable influences on thruster discharge and performance. Based on existing theories, an electrode is predicted to weaken electron-wall interaction due to its low secondary electron emission characteristic. In this paper, the electron-wall interaction in an Aton-type Hall thruster with low-emissive electrodes placed near the exit of discharge channel is studied by a fully kinetic particle-in-cell method. The results show that the electron-wall interaction in the region of segmented electrode is indeed weakened, but it is significantly enhanced in the remaining region of discharge channel. It is mainly caused by electrode conductive property which makes equipotential lines convex toward channel exit and even parallel to wall surface in near-wall region; this convex equipotential configuration results in significant physical effects such as repelling electrons, which causes the electrons to move toward the channel center, and the electrons emitted from electrodes to be remarkably accelerated, thereby increasing electron temperature in the discharge channel, etc. Furthermore, the results also indicate that the discharge current in the segmented electrode case is larger than in the non-segmented electrode case, which is qualitatively in accordance with previous experimental results.
Keywords:  Hall thruster      electron-wall interaction      segmented electrodes      particle simulation  
Received:  23 October 2012      Revised:  07 January 2013      Accepted manuscript online: 
PACS:  52.65.Rr (Particle-in-cell method)  
  52.75.-d (Plasma devices)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 0903005203189), the National Natural Science Foundation of China (Grant Nos. 11005025, 10975026, and 11275034), the Scientific Research Innovation Foundation of Harbin Institution of Technology, China (Grant No. HITNSRIF2009044), and the Key Project of the Scientific Technology Program of Liaoning Province, China (Grant No. 2011224007).
Corresponding Authors:  Qing Shao-Wei     E-mail:  qshaowei@gmail.com

Cite this article: 

Qing Shao-Wei (卿绍伟), E Peng (鄂鹏), Duan Ping (段萍), Xu Dian-Guo (徐殿国) Numerical study on the electron-wall interaction in a Hall thruster with segmented electrodes placed at the channel exit 2013 Chin. Phys. B 22 085203

[1] Kim V 1998 J. Propul. Power 14 736
[2] Zhurin V V, Kaufman H R and Robinson R S 1999 Plasma Sources Sci. Technol. 8 1
[3] Morozov A I 1968 Prikl. Mekh. Tekh. Fiz. 3 19
[4] Morozov A I and Savelév V V 2001 Plasma Phys. Rep. 27 570
[5] Zhang F K, Ding Y J, Qing S W and Wu X D 2011 Chin. Phys. B 20 125201
[6] Raitses Y, Staack D, Keidar M and Fisch N J 2005 Phys. Plasmas 12 057104
[7] Mazouffre S, Echegut P and Dudeck M 2007 Plasma Sources Sci. Technol. 16 13
[8] Hobbs G D and Wesson J A 1967 Plasma Phys. 9 85
[9] Keidar M, Boyd I D and Beilis I I 2001 Phys. Plasmas 8 5315
[10] Gascon N, Dudeck M and Barral S 2003 Phys. Plasmas 10 4123
[11] Meezan N B, Gascon N and Cappelli M A 2001 27th International Electric Propulsion Conference (Worthington: Electric Rocket Propulsion Society) IEPC-01-039
[12] Raitses Y, Dorf L A, Litvak A A and Fisch N J 2000 J. Appl. Phys. 88 1263
[13] Morozov A I and Savel'ev V V 2000 inReviews of Plasma Physics, ed. Kadomtsev B B and Shafranov V D (New York: Consultants Bureau) Vol. 21
[14] Fisch N J, Raitses Y, Dorf L A and Litvak A A 1999 AIAA Paper AIAA-2572
[15] Fruchtman A, Fisch N J and Raitses Y 2001 Phys. Plasmas 8 1048
[16] Staack D, Raitses Y and Fisch N J 2003 Proceedings of the 28th International Electric Propulsion Conference (Cleveland, OH: Electric Rocket Propulsion Society) IEPC-157
[17] Yu D R, Li J, Liu H, Ning Z X and Li Y 2009 Contrib. Plasma Phys. 49 413
[18] Yu D R, Wei L Q, Li H, Li Y and Jiang B H 2009 Plasma Sci. Technol. 11 714
[19] Yu D R, Qing S W, Liu H and Li H 2011 Contrib. Plasma Phys. 51 955
[20] Szabo J J 2001 Ph. D. thesis, Massachusetts Institute of Technology, USA
[21] Birdsall C K and Langdon A B 1991 Institute of Physics Publishing (Bristol and Philadelphia)
[22] Liu H, Yu D R, Yan G J and Liu J Y 2008 Contrib. Plasma Phys. 48 603
[23] Fife J M 1998 Ph. D. thesis Massachusetts Institute of Technology, USA
[24] Koo J W and Boyd I D 2004 Comput. Phys. Commun. 164 442
[25] Yu D R, Zhang F K, Liu H, Li H, Yan G J and Liu J Y 2008 Phys. Plasmas 15 104501
[26] Doss S and Miller K 1979 Siami. Numer. Anal. 16 837
[27] Matyash K, Schneider R, Mutzke A, Kalentev O, Taccogna F, Koch N and Schirra M 2010 IEEE Trans. Plasma Sci. 38 2274
[28] FEMM 2004 Finite Element Method Magnetics (Software Package, Ver.4.0, Foster-Miller, Inc, Boston, MA)
[29] Liu H, Wu B Y, Yu D R, Cao Y and Duan P 2010 J. Phys. D: Appl. Phys. 43 165202
[30] Taccogna F, Longo S, Capitelli M and Schneider R 2005 Phys. Plasmas 12 053502
[31] Morozov A I and Savelév V V 2000 Plasma Phys. Rep. 26 875
[1] Research of influence of the additional electrode on Hall thruster plume by particle-in-cell simulation
Xi-Feng Cao(曹希峰), Hui Liu(刘辉), Da-Ren Yu(于达仁). Chin. Phys. B, 2020, 29(9): 095204.
[2] The E×B drift instability in Hall thruster using 1D PIC/MCC simulation
Zahra Asadi, Mehdi Sharifian, Mojtaba Hashemzadeh, Mahmood Borhani Zarandi, Hamidreza Ghomi Marzdashti. Chin. Phys. B, 2020, 29(2): 025204.
[3] Influence of channel length on discharge performance of anode layer Hall thruster studied by particle-in-cell simulation
Xi-Feng Cao(曹希峰), Hui Liu(刘辉), Wen-Jia Jiang(蒋文嘉), Zhong-Xi Ning(宁中喜), Run Li(黎润), Da-Ren Yu(于达仁). Chin. Phys. B, 2018, 27(8): 085204.
[4] Particle-in-cell simulation for the effect of magnetic cusp on discharge characteristics in a cylindrical Hall thruster
Sheng-Tao Liang(梁圣涛), Hui Liu(刘辉), Da-Ren Yu(于达仁). Chin. Phys. B, 2018, 27(4): 045201.
[5] Experimental and numerical investigation of a Hall thruster with a chamfered channel wall
Hong Li(李鸿), Guo-Jun Xia(夏国俊), Wei Mao(毛威), Jin-Wen Liu(刘金文), Yong-Jie Ding(丁永杰), Da-Ren Yu(于达仁), Xiao-Gang Wang(王晓钢). Chin. Phys. B, 2018, 27(10): 105209.
[6] A hybrid mode of one- and two-surface multipactor on grooved dielectric surface
Li-Bing Cai(蔡利兵), Jian-Guo Wang(王建国), Guo-Xin Cheng(程国新), Xiang-Qin Zhu(朱湘琴). Chin. Phys. B, 2016, 25(2): 025203.
[7] A Ku-band magnetically insulated transmission line oscillator with overmoded slow-wave-structure
Tao Jiang(江涛), Jun-Tao He(贺军涛), Jian-De Zhang(张建德), Zhi-Qiang Li(李志强), Jun-Pu Ling(令钧溥). Chin. Phys. B, 2016, 25(12): 125202.
[8] A high-power subterahertz surface wave oscillator with separated overmoded slow wave structures
Guang-Qiang Wang(王光强), Jian-Guo Wang(王建国), Peng Zeng(曾鹏), Dong-Yang Wang(王东阳), Shuang Li(李爽). Chin. Phys. B, 2016, 25(12): 128401.
[9] Mode analysis and design of 0.3-THz Clinotron
Shuang Li(李爽), Jian-Guo Wang(王建国), Guang-Qiang Wang(王光强), Peng Zeng(曾鹏), Dong-Yang Wang(王东阳). Chin. Phys. B, 2016, 25(10): 108401.
[10] Low-frequency oscillations in Hall thrusters
Wei Li-Qiu (魏立秋), Han Liang (韩亮), Yu Da-Ren (于达仁), Guo Ning (郭宁). Chin. Phys. B, 2015, 24(5): 055201.
[11] Test particle simulations of resonant interactions between energetic electrons and discrete, multi-frequency artificial whistler waves in the plasmasphere
Chang Shan-Shan (常珊珊), Ni Bin-Bin (倪彬彬), Zhao Zheng-Yu (赵正予), Gu Xu-Dong (顾旭东), Zhou Chen (周晨). Chin. Phys. B, 2014, 23(8): 089401.
[12] Characteristics of wall sheath and secondary electron emission under different electron temperatures in a Hall thruster
Duan Ping (段萍), Qin Hai-Juan (覃海娟), Zhou Xin-Wei (周新维), Cao An-Ning (曹安宁), Chen Long (陈龙), Gao Hong (高宏). Chin. Phys. B, 2014, 23(7): 075203.
[13] Three-dimensional particle-in-cell method of simulating high power terahertz gyrotrons with planar structure
Chen Zai-Gao (陈再高), Wang Jian-Guo (王建国), Wang Yue (王玥), Qiao Hai-Liang (乔海亮), Guo Wei-Jie (郭伟杰), Zhang Dian-Hui (张殿辉). Chin. Phys. B, 2014, 23(6): 068402.
[14] Theoretical and numerical studies on a planar gyrotronwith transverse energy extraction
Chen Zai-Gao (陈再高), Wang Jian-Guo (王建国), Wang Yue (王玥). Chin. Phys. B, 2014, 23(10): 108401.
[15] Particle simulation on electron acceleration process by the laser ponderomotive force in inhomogeneous underdense plasma layers
Cao Li-Hua (曹莉华), Yu Wei (余玮), Xu Han (徐涵), Liu Zhan-Jun (刘占军), Zheng Chun-Yang (郑春阳), Li Bin (李斌). Chin. Phys. B, 2004, 13(8): 1302-1308.
No Suggested Reading articles found!