Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 070201    DOI: 10.1088/1674-1056/22/7/070201
GENERAL   Next  

Multi-symplectic scheme for the coupled Schrödinger–Boussinesq equations

Huang Lang-Yang (黄浪扬)a, Jiao Yan-Dong (焦艳东)b, Liang De-Min (梁德民)c
a School of Mathematical Sciences, Huaqiao University, Quanzhou 362011, China;
b School of Sciences, Hebei University of Technology, Tianjin 300401, China;
c Department of Electronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
Abstract  In this paper, a multi-symplectic Hamiltonian formulation is presented for the coupled Schrödinger–Boussinesq equations (CSBE). Then, a multi-symplectic scheme of the CSBE is derived. The discrete conservation laws of the Langmuir plasmon number and total perturbed number density are also proved. Numerical experiments show that the multi-symplectic scheme simulates the solitary waves for a long time, and preserves the conservation laws well.
Keywords:  coupled Schrödinger–Boussinesq equations      multi-symplectic scheme      conservation laws      numerical experiments  
Received:  10 March 2013      Revised:  08 April 2013      Accepted manuscript online: 
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  02.70.Bf (Finite-difference methods)  
  02.30.Jr (Partial differential equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11271171, 11001072, and 11101381), the Natural Science Foundation of Fujian Province, China (Grant No. 2011J01010), the Fundamental Research Funds for the Central Universities, China, and the National Science Foundation of Huaqiao University, China (Grant No. 10QZR21).
Corresponding Authors:  Huang Lang-Yang     E-mail:  hly6@163.com

Cite this article: 

Huang Lang-Yang (黄浪扬), Jiao Yan-Dong (焦艳东), Liang De-Min (梁德民) Multi-symplectic scheme for the coupled Schrödinger–Boussinesq equations 2013 Chin. Phys. B 22 070201

[1] Guo B L 1983 Acta Math. Sin. 26 297 (in Chinese)
[2] Makhankov V G 1974 Phys. Lett. A 50 42
[3] Makhankov V G 1978 Phys. Rep. 35 1
[4] Zakharov V E 1972 Sov. Phys. JETP 35 908
[5] Yajima N and Satsuma J 1979 Prog. Theor. Phys. 62 370
[6] Rao N N 1996 Pramana J. Phys. 46 161
[7] Panigrahy M and Dash P C 1999 Phys. Lett. A 261 284
[8] Makhankov V G 1990 Soliton phenomenology (Dordrecht: Kluwer Academic) pp. 246-287
[9] Zhang L M, Bai D M and Wang S S 2011 J. Comput. Appl. Math. 235 4899
[10] Bai D M and Wang J L 2012 Commun. Nonlinear Sci. Numer. Simulat. 17 1201
[11] Bai D M and Zhang L M 2011 Int. J. Comput. Math. 88 1714
[12] Bridges T J and Reich S 2001 Phys. Lett. A 284 184
[13] Chen J B, Qin M Z and Tang Y F 2002 Comput. Math. Appl. 43 1095
[14] Huang L Y 2009 Chin. J. Comput. Phys. 26 693
[15] Hong J L and Kong L H 2010 Commun. Comput. Phys. 7 613
[16] Wang Y S, Li Q H and Song Y Z 2008 Chin. Phys. Lett. 25 1538
[17] Kong L H, Hong J L, Wang L and Fu F F 2009 J. Comput. Appl. Math. 231 664
[18] Hong J L, Liu X Y and Li C 2007 J. Comput. Phys. 226 1968
[19] Lv Z Q, Wang Y S and Song Y Z 2013 Chin. Phys. Lett. 30 030201
[20] Wang J 2008 Chin. Phys. Lett. 25 3531
[21] Wang J 2009 J. Phys. A: Math. Theor. 42 085205
[22] Cai J X and Liang H 2012 Chin. Phys. Lett. 29 080201
[23] Qian X, Song S H, Gao E and Li W B 2012 Chin. Phys. B 21 070206
[1] Two integrable generalizations of WKI and FL equations: Positive and negative flows, and conservation laws
Xian-Guo Geng(耿献国), Fei-Ying Guo(郭飞英), Yun-Yun Zhai(翟云云). Chin. Phys. B, 2020, 29(5): 050201.
[2] An extension of integrable equations related to AKNS and WKI spectral problems and their reductions
Xian-Guo Geng(耿献国), Yun-Yun Zhai(翟云云). Chin. Phys. B, 2018, 27(4): 040201.
[3] A local energy-preserving scheme for Zakharov system
Qi Hong(洪旗), Jia-ling Wang(汪佳玲), Yu-Shun Wang(王雨顺). Chin. Phys. B, 2018, 27(2): 020202.
[4] A new six-component super soliton hierarchy and its self-consistent sources and conservation laws
Han-yu Wei(魏含玉) and Tie-cheng Xia(夏铁成). Chin. Phys. B, 2016, 25(1): 010201.
[5] Multi-symplectic variational integrators for nonlinear Schrödinger equations with variable coefficients
Cui-Cui Liao(廖翠萃), Jin-Chao Cui(崔金超), Jiu-Zhen Liang(梁久祯), Xiao-Hua Ding(丁效华). Chin. Phys. B, 2016, 25(1): 010205.
[6] A novel hierarchy of differential–integral equations and their generalized bi-Hamiltonian structures
Zhai Yun-Yun (翟云云), Geng Xian-Guo (耿献国), He Guo-Liang (何国亮). Chin. Phys. B, 2014, 23(6): 060201.
[7] Symmetries and conservation laws of one Blaszak–Marciniak four-field lattice equation
Wang Xin (王鑫), Chen Yong (陈勇), Dong Zhong-Zhou (董仲周). Chin. Phys. B, 2014, 23(1): 010201.
[8] Integrability of extended (2+1)-dimensional shallow water wave equation with Bell polynomials
Wang Yun-Hu (王云虎), Chen Yong (陈勇). Chin. Phys. B, 2013, 22(5): 050509.
[9] Noether symmetry and conserved quantities of the analytical dynamics of a Cosserat thin elastic rod
Wang Peng (王鹏), Xue Yun (薛纭), Liu Yu-Lu (刘宇陆). Chin. Phys. B, 2013, 22(10): 104503.
[10] Lattice soliton equation hierarchy and associated properties
Zheng Xin-Qing (郑新卿), Liu Jin-Yuan (刘金元). Chin. Phys. B, 2012, 21(9): 090202.
[11] Mei symmetry and conserved quantities in Kirchhoff thin elastic rod statics
Wang Peng(王鹏), Xue Yun(薛纭), and Liu Yu-Lu(刘宇陆) . Chin. Phys. B, 2012, 21(7): 070203.
[12] An extension of the modified Sawada–Kotera equation and conservation laws
He Guo-Liang(何国亮) and Geng Xian-Guo(耿献国) . Chin. Phys. B, 2012, 21(7): 070205.
[13] A note on teleparallel Killing vector fields in Bianchi type VIII and IX space–times in teleparallel theory of gravitation
Ghulam Shabbir, Amjad Ali, and Suhail Khan. Chin. Phys. B, 2011, 20(7): 070401.
[14] Conservation laws for variable coefficient nonlinear wave equations with power nonlinearities
Huang Ding-Jiang(黄定江), Zhou Shui-Geng(周水庚), and Yang Qin-Min(杨勤民). Chin. Phys. B, 2011, 20(7): 070202.
[15] The symmetries in the Maxwell-Chern-Simons theory coupled to matter fields
Jiang Jin-Huan (江金环), Liu Yun (刘赟), Li Zi-Ping (李子平). Chin. Phys. B, 2004, 13(2): 153-158.
No Suggested Reading articles found!