Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 067802    DOI: 10.1088/1674-1056/22/6/067802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Planar terahertz metamaterial with three-resonant frequencies

Chen Zhi (陈智)a, Zhang Ya-Xin (张雅鑫)b
a National Key Laboratory of Science and Technology on Communication, University of Electronic Science and Technology of China, Chengdu 611731, China;
b Terahertz Science and Technology Research Center, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  In this paper, we study a three-resonant metamaterial with the combination of dual-resonant and single-resonant metamaterials. It presents a new method to design multi-resonant metamaterial which has a smaller dimension than the general symmetric and asymmetric multi-resonant metamaterials. Theoretical and experimental results show that the structure has three distinct absorption frequencies centering around 0.29 THz, 0.46 THz, and 0.92 THz, and each of them corresponds to a different resonant mode. Due to the well-separation of different resonances, this design provides a unique and effective method to construct multiband terahertz devices.
Keywords:  THz-metamaterial      THz-resonator  
Received:  10 December 2012      Revised:  04 March 2013      Accepted manuscript online: 
PACS:  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
Fund: Project supported by High-Tech Research and Development (863) Program of China (Grand No. 2011AA010201) and the National Natural Science Foundation of China (Contract No. 61001031).
Corresponding Authors:  Zhang Ya-Xin     E-mail:  zhangyaxin@uestc.edu.cn

Cite this article: 

Chen Zhi (陈智), Zhang Ya-Xin (张雅鑫) Planar terahertz metamaterial with three-resonant frequencies 2013 Chin. Phys. B 22 067802

[1] Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C and Schultz S 2000 Phys. Rev. Lett. 84 4184
[2] Pendry J B, Schuring D and Smith D R 2006 Science 312 1780
[3] Walser R M 2001 Proc. SPIE 4467 1
[4] Cummer S A and Popa B I 2004 Appl. Phys. Lett. 85 4564
[5] Tsai Y J, Larouche S, Tyler T, Lipworth G, Jokerst N M and Smith D R 2011 Opt. Express 19 24
[6] O'Hara J F, Smirnova E, Azad A K, Chen H T and Taylor A J 2007 Active and Passive Electronics 10 1155
[7] Lim C S, Hong M H, Chen Z C, Han N R, Luk'yanchuk B and Chong T C 2010 Opt. Express 18 12
[8] Chen Z C, Hong M H, Lim C S, Han N R, Shi L P and Chong T C 2010 Appl. Phys. Lett. 96 181101
[9] Tao H, Strikwerda A C, Fan K, Padilla W J, Zhang X and Averitt R D 2009 Phys. Rev. Lett. 103 147401
[10] Chen W C, Totachawattana A, Fan K, Ponsetto J L, Strikwerda A C, Zhang X, Averitt R D and Padilla W J 2012 Phys. Rev. B 85 035112
[11] Tao H, Landy N L, Bingham C M, Zhang X, Averitt R D and Padilla W J 2008 Opt. Express 16 007181
[12] Azad A K, Taylor A J and Smirnova E and O'Hara J F 2008 Appl. Phys. Lett. 92 011119
[13] Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J and Averitt R D 2006 Nature 444 597
[14] Chen H T, Padilla W J, Zide J M O, Rank S R, Gossard A C, Taylor A J and Averitt R D 2007 Opt. Lett. 32 001620
[15] Chen H T, Padilla W J, Cich M J, Azad A K, Averitt R D and Taylor A J 2009 Nat. Photon. 3 148
[16] Shen N H, Kafesaki M, Koschny T, Zhang L, Economou E N and Soukoulis C M 2009 Phys. Rev. B 79 161102
[17] Shrekenhamer D, Rout S, Strikwerda A C, Bingham C, Averitt R D, Sonkusale S and Padilla W J 2011 Opt. Express 19 10
[18] Withayachumnankul W and Abbott D 2009 IEEE Photon. J. 1 99
[19] Yuan Y, Bingham C, Tyler T, Palit S, Hand T H, Padilla W J, Smith D R, Jokerst N M and Cummer S A 2008 Opt. Express 16 9746
[20] Yuan Y, Bingham C, Tyler T, Palit S, Hand T H, Padilla W J, Smith D R, Jokerst N M and Cummer S A 2008 Appl. Phys. Lett. 93 191110
[21] Wang J F, Qu S B, Yang Y M, Ma H, Wu X and Xu Z 2009 Appl. Phys. Lett. 95 014105
[22] Lin M Q and Cui T J 2008 IEEE Microw. Wirel. Co. 18 245
[23] Xiong H, Hong J S and Jin D L 2012 Chin. Phys. B 21 124101
[24] Fan J, Sun G Y and Zhu W R 2011 Chin. Phys. B 20 114101
[25] Zhang Y X, Qiao S, Huang W X, Ling W and Li L 2011 Appl. Phys. Lett. 99 073111
[26] Zhang Y X, Qiao S, Zhao T, Ling W and Liu S 2012 Prog. Electromag. Res. 125 21
[1] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[2] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(1): 014201.
[5] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[6] A pure dielectric metamaterial absorber with broadband and thin thickness based on a cross-hole array structure
Wenbo Cao(曹文博), Youquan Wen(温又铨), Chao Jiang(姜超), Yantao Yu(余延涛), Yiyu Wang(王艺宇), Zheyipei Ma(麻哲乂培), Zixiang Zhao(赵子翔), Lanzhi Wang(王兰志), and Xiaozhong Huang(黄小忠). Chin. Phys. B, 2022, 31(11): 117801.
[7] Anisotropic plasmon dispersion and damping in multilayer 8-Pmmn borophene structures
Kejian Liu(刘可鉴), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2022, 31(11): 117303.
[8] Near-field multiple super-resolution imaging from Mikaelian lens to generalized Maxwell's fish-eye lens
Yangyang Zhou(周杨阳) and Huanyang Chen(陈焕阳). Chin. Phys. B, 2022, 31(10): 104205.
[9] Bound states in the continuum in metal—dielectric photonic crystal with a birefringent defect
Hongzhen Tang(唐宏珍), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2022, 31(10): 104209.
[10] Momentum-space polarization fields in two-dimensional photonic-crystal slabs: Physics and applications
Wen-Zhe Liu(刘文哲), Lei Shi(石磊), Che-Ting Chan(陈子亭), and Jian Zi(资剑). Chin. Phys. B, 2022, 31(10): 104211.
[11] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[12] Design method of reusable reciprocal invisibility and phantom device
Cheng-Fu Yang(杨成福), Li-Jun Yun(云利军), and Jun-Wei Li(李俊玮). Chin. Phys. B, 2022, 31(8): 084101.
[13] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[14] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[15] Design optimization of broadband extreme ultraviolet polarizer in high-dimensional objective space
Shang-Qi Kuang(匡尚奇), Bo-Chao Li(李博超), Yi Wang(王依), Xue-Peng Gong(龚学鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(7): 077802.
No Suggested Reading articles found!