Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 064211    DOI: 10.1088/1674-1056/22/6/064211
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Generation of compact high-power high-efficiency normal-dispersion pumping supercontinuum in silica photonic crystal fiber pumped with 1064-nm picosecond pulse

Chen Hong-Wei (谌鸿伟), Jin Ai-Jun (靳爱军), Yang Wei-Qiang (杨未强), Chen Sheng-Ping (陈胜平), Hou Jing (侯静), Lu Qi-Sheng (陆启生)
College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073, China
Abstract  Broadband normal dispersion pumping supercontinuum (SC) generation in silica photonic crystal fiber (PCF) is investigated in this paper. A 1064-nm picosecond fiber laser is used to pump silica PCF for the SC generation. The length of PCF is optimized for the most efficient stimulated Raman scattering process in the picosecond pump pulse region. The first stimulated Raman Stokes peak is located in the anomalous dispersion regime of the PCF and nearby the zero dispersion wavelength; thus the SC generation process can benefit from both normal dispersion pumping scheme and anomalous dispersion pumping scheme. The 51.7-W SC spanning from about 700 nm to beyond 1700 nm is generated with an all-fiber configuration, and the pump-to-SC conversion efficiency is up to 90%. In order to avoid the output fiber end face damage and increase the stability of the system, an improved output solution for the high power SC is proposed in our experiment. This high-efficiency near-infrared SC source is very suitable for the applications that the average output power and spectral power density are firstly desirable.
Keywords:  fiber laser      supercontinuum      photonic crystal fiber  
Received:  30 October 2012      Revised:  05 December 2012      Accepted manuscript online: 
PACS:  42.55.Wd (Fiber lasers)  
  42.65.-k (Nonlinear optics)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
Fund: Project supported by the International Science and Technology Cooperation Program of the Ministry of Science and Technology of China (Grant No. 2012DFG11470), the State Key Program of the National Natural Science Foundation of China (Grant No. 61235008), the National Natural Science Foundation of China (Grant Nos. 10904173, 11004247, 11274385, 61077076, and 61007037), the Science Foundation for Distinguished Young Scholars of Hunan Province, China (Grant No. 12JJ1010), the Postgraduate Innovation Foundation of Hunan Province, China (Grant No. CX2011B034), and the Postgraduate Innovation Foundation of National University of Defense Technology, China (Grant No. B110704).
Corresponding Authors:  Hou Jing     E-mail:  houjing25@sina.com

Cite this article: 

Chen Hong-Wei (谌鸿伟), Jin Ai-Jun (靳爱军), Yang Wei-Qiang (杨未强), Chen Sheng-Ping (陈胜平), Hou Jing (侯静), Lu Qi-Sheng (陆启生) Generation of compact high-power high-efficiency normal-dispersion pumping supercontinuum in silica photonic crystal fiber pumped with 1064-nm picosecond pulse 2013 Chin. Phys. B 22 064211

[1] Dudley J M and Taylor J R 2010 Supercontinuum Generation in Photonic Crystal Fibers (New York: Cambridge University Press) p. 87
[2] Yuan J H, Sang X Z, Yu C X, Xin X J, Shen X W, Zhang J L, Zhou G Y, Li S G and Hou L T 2011 Chin. Phys. B 20 054210
[3] Wang X Y, Li S G, Liu S, Yin G B and Li J S 2012 Chin. Phys. B 21 054220
[4] Fang X H, Hu M L, Huang L L, Chai L, Dai N L, Li J Y, Tashchilina A Y, Zheltikov A M and Wang C Y 2012 Opt. Lett. 37 2292
[5] Mussot A and Kudlinski A 2009 Electron. Lett. 45 29
[6] Ranka J K, Windeler R S and Stentz A J 2000 Opt. Lett. 25 25
[7] Travers J C, Rulkov A B, Cumberland B A, Popov S V and Taylor J R 2008 Opt. Express 16 14435
[8] Chen K K, Alam S U, Price J H V, Hayes J R, Lin D J, Malinowski A, Codemard C, Ghosh D, Pal M, Bhadra S K and Richardson D J 2010 Opt. Express 18 5426
[9] Hu X, Zhang W, Yang Z, Wang Y, Zhao W, Li X, Wang H, Li C and Shen D 2011 Opt. Lett. 36 2659
[10] Dudley J M, Genty G and Coen S 2006 Rev. Mod. Phys. 78 1135
[11] Hooper L E, Mosley P J, Muir A C, Wadsworth W J and Knight J C 2011 Opt. Express 19 4902
[12] Tu H H, Liu Y, Liu X M, Turchinovich D, Lægsgaard J and Boppart S A 2012 Opt. Express 20 1113
[13] Shi J, Feng X, Horak P, Chen K, Teh P S, Alam S U, Loh W H, Richardson D J and Ibsen M 2011 J. Lightwave Technol. 29 3461
[14] Chen S P, Chen H W, Hou J and Liu Z J 2009 Opt. Express 17 24008
[15] Chen H W, Lei Y, Chen S P, Hou J and Lu Q S 2012 Appl. Phys. B 109 233
[16] Chen S P, Chen H W and Hou J 2011 Laser Phys. 21 191
[17] Chen H W, Chen S P, Wang J H, Chen Z L and Hou J 2011 Opt. Commun. 248 5484
[18] Agrawal G P 2010 Nonlinear Fiber Optics & Applications of Nonlinear Fiber Optics 2nd edn. (Beijing: Publishing House of Electronics Industry) p. 205
[19] Xi X M, Chen Z L, Sun G L and Hou J 2011 Appl. Opt. 50 E50
[20] Vanholsbeeck F, Coen S, Emplit P, Martinelli C and Sylvestre T 2004 Opt. Lett. 29 9982
[1] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[2] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[3] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[4] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[5] High power supercontinuum generation by dual-color femtosecond laser pulses in fused silica
Saba Zafar, Dong-Wei Li(李东伟), Acner Camino, Jun-Wei Chang(常峻巍), and Zuo-Qiang Hao(郝作强). Chin. Phys. B, 2022, 31(8): 084209.
[6] Precise determination of characteristic laser frequencies by an Er-doped fiber optical frequency comb
Shiying Cao(曹士英), Yi Han(韩羿), Yongjin Ding(丁永今), Baike Lin(林百科), and Zhanjun Fang(方占军). Chin. Phys. B, 2022, 31(7): 074207.
[7] Sequential generation of self-starting diverse operations in all-fiber laser based on thulium-doped fiber saturable absorber
Pei Zhang(张沛), Kaharudin Dimyati, Bilal Nizamani, Mustafa M. Najm, and S. W. Harun. Chin. Phys. B, 2022, 31(6): 064204.
[8] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[9] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[10] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[11] Single-frequency distributed Bragg reflector Tm:YAG ceramic derived all-glass fiber laser at 1.95 μm
Guo-Quan Qian(钱国权), Min-Bo Wu(吴敏波), Guo-Wu Tang(唐国武), Min Sun(孙敏),Dong-Dan Chen(陈东丹), Zhi-Bin Zhang(张志斌), Hui Luo(罗辉), and Qi Qian(钱奇). Chin. Phys. B, 2022, 31(12): 124205.
[12] Spatiotemporal mode-locked multimode fiber laser with dissipative four-wave mixing effect
Ming-Wei Qiu(邱明伟), Chao-Qun Cai(蔡超群), and Zu-Xing Zhang(张祖兴). Chin. Phys. B, 2022, 31(10): 104207.
[13] Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber
Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2021, 30(9): 094207.
[14] A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber
Lu-Lu Xu(徐路路), Ying-Ying Wang(王莹莹), Li Jiang(江丽), Pei-Long Yang(杨佩龙), Lei Zhang(张磊), and Shi-Xun Dai(戴世勋). Chin. Phys. B, 2021, 30(8): 084210.
[15] Generation of multi-wavelength square pulses in the dissipative soliton resonance regime by a Yb-doped fiber laser
Xude Wang(汪徐德), Simin Yang(杨思敏), Mengqiu Sun(孙梦秋), Xu Geng(耿旭), Jieyu Pan (潘婕妤), Shuguang Miao(苗曙光), and Suwen Li(李素文). Chin. Phys. B, 2021, 30(6): 064212.
No Suggested Reading articles found!