Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 063101    DOI: 10.1088/1674-1056/22/6/063101
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Differences in adsorption of FePc on coinage metal surfaces

R.A. Rehmana b, Cai Yi-Liang (蔡亦良)b, Zhang Han-Jie (张寒洁)b, Wu Ke (吴珂)b, Dou Wei-Dong (窦卫东)b, Li Hai-Yang (李海洋)b, He Pi-Mo (何丕模)b, Bao Shi-Ning (鲍世宁)b
a Physics Department, Zhejiang University, Hangzhou 310027, China;
b Physics Department, Forman Christian College University, Lahore-Pakistan
Abstract  A study of the electronic and structural properties of iron phthalocyanine (FePc) molecule adsorbed on coinage metal surfaces Cu (100) and Cu (110) has been conducted by means of density functional theory calculations. The strength of the molecule-substrate interactions is interpreted in terms of the lateral adsorption geometry and the site specific electronic structure of the molecule. In the case of FePc on (100)-oriented copper surface, the benzopyrrole leg is found to be oriented at an angle of 9° or 3° from the [01-1] substrate direction. Further, an upward bend in the molecular plane ranging from 7° to 10° is also observed; giving an almost buckled shape to the molecule. However, in the case of FePc on Cu (110), neither a bend nor a sizable rotation is observed. From general knowledge of the principals of structural and electronic properties, it is concluded that FePc-Cu (100) interaction is relatively stronger than FePc-Cu (110) interaction, which is further evidenced by the charge transfer, work function changes, changes in the shape of the adsorbed molecular orbitals, and the orbital shifts. Furthermore, a density of states analysis shows that valence band level shift is surface- and site-dependent.
Keywords:  iron phthalocyanine      copper      electronic and structural properties      density functional theory  
Received:  18 November 2012      Revised:  18 December 2012      Accepted manuscript online: 
PACS:  31.15.A  
  31.15.ae (Electronic structure and bonding characteristics)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.15.Ap (Basis sets (LCAO, plane-wave, APW, etc.) and related methodology (scattering methods, ASA, linearized methods, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10974172, 10774129, and 61106131) and the Fundamental Research Funds for the Central Universities.
Corresponding Authors:  R.A. Rehman     E-mail:  ateeq215@gmail.com

Cite this article: 

R.A. Rehman, Cai Yi-Liang (蔡亦良), Zhang Han-Jie (张寒洁), Wu Ke (吴珂), Dou Wei-Dong (窦卫东), Li Hai-Yang (李海洋), He Pi-Mo (何丕模), Bao Shi-Ning (鲍世宁) Differences in adsorption of FePc on coinage metal surfaces 2013 Chin. Phys. B 22 063101

[1] Alvaro M, Carbonell E, Espl M and Garcia H 2005 Appl. Catal. B 57 37
[2] Reddi E, Lo Castro G, Biolo R and Jori G 1987 Br. J. Cancer. 56 597
[3] Cheng Z H, Gao L, Deng Z T, Jiang N, Liu Q, Shi D X, Du S X, Guo H M and Gao H J 2007 J. Phys. Chem. C 111 9240
[4] de la Torre G, Va'zquez P, Agullo Lopez F and Torres T 2004 Chem. Rev. 104 3723
[5] de la Torre G, Claessens C G and Torres T 2007 Chem. Commun. (Cambridge) 20 2000
[6] Lindsay S M and Ratner M A 2007 Adv. Mater. 19 23
[7] Yokoyama T, Yokoyama S, Kamikado T, Okuno Y and Mashiko S 2001 Nature 413 619
[8] Åhlund J, Schnadt J , Nilson K, Göthelid E, Schiessling J, Besen bacher F, MÅrtensson N and Puglia C 2007 Surf. Sci. 6013661
[9] Bobaru S C, Salomon E, Layet J M and Angot T 2011 J. Phys. Chem. C 115 5875
[10] Dou W D, Tang Y B, Lee C S, Bao S N and Lee S T 2010 J. Chem. Phys. 133 144704
[11] Lippel P H, Wilson R J, Miller M D, Woll C and Chiang S 1989 Phys. Rev. Lett. 62 171
[12] Proehl H, Toerker M, Fritz T, Sellam F, Leo K, Simpson C and Mullen K 2001 Phys. Rev. B 63 205409
[13] Ample F and Joachim C 2005 Surf. Sci. 600 3243
[14] Palmgren P, Angot T, I Nlebedim C, Layet J M, Le Lay G and Gothelid M 2008 J. Chem. Phys. 128 064702
[15] Casarin M, Di Marino M, Forrer D, Sambi M, Sedona F, Tondello E, Vittadini A, Barone V and Pavone M 2010 J. Phys. Chem. C 114 2144
[16] Bialek B, Kim I G and Lee J I 2003 Surf. Sci. 526 367
[17] Baran J D and Larsson J A 2010 Phys. Chem. Chem. Phys. 12 6179
[18] Dou W D, Zhang H J and Bao S N 2009 Chin. Phys B 18 344
[19] Zhang H J, Qian H Q, Jin D, Ateeq-ur-Rehman, Dou W D, Li H Y, He P M and Bao S N 2011 Chem. Phys. Letts. 503 5
[20] Delley B 2000 J. Chem. Phys. 113 7756
[21] Perdew J P, Burke K and Ernzehof M 1996 Phys. Rev. Lett. 77 3865
[22] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[23] Monkhorst J H and Pack J D 1976 Phys. Rev. B 13 5188
[24] Kresse G and Furthmuller 1996 Phys. Rev. B 54 11169
[25] Charles Kittel 1976 Introduction to Solid State Physics (New York: John Wiley and Sons Inc.)
[26] Kreikemeyer Lorenzo D, Bradley M K, Unterberger W, Duncan D A, Lerotholi T J, Robinson and Woodruff D P 2011 Surf. Sci. 605 193
[27] Michaelson H B 1977 J. Appl. Phys. 48 4729
[28] Tauz F S, Eremtchenko M, Schaefer J A, Sokolowski M, Shklover V and Umbach E 2002 Phys. Rev. B 65 125405
[29] Qian H Q, Jiang L Z, Ateeq-ur-Rehman, Zhang H J, Li H Y, He P M and Bao S N 2012 Chem. Phys. Lett. 537 53
[30] Rehman R A, Zhang H J, Qian H Q, Dan D, Dou W D, Li H Y, He P M and Bao S N 2012 Physica E 44 1572
[31] Down W D, Guan D D, Song F, Li N N, Zhang H J, Li H Y, He P M, Chen H Z, Bao S N and Philip Hofmann 2008 J. Chem. Phys. 128 244711
[32] Heinrich B W, Iacovita C, Brumme T, Choi D J, Limot L, Rastei M V, Hofer W A, Kortus J and Bucher J P 2010 J. Phys. Chem. Lett. 1 1517
[33] Witte G and Woll C 2004 J. Mater. Res. 19 1889
[34] Liao M S and Scheiner S 2001 J. Chem. Phys. 114 9780
[35] Kirner J F, Dow W and Scheidt W R 1977 Inorg. Chem. 15 1685
[36] Mugarza A, Robles R, Krull C, Korrytar R, Lorente N and Gambardella P 2012 Phys. Rev. B 85 155437
[37] Betti M G, Kanjilal A, Mariani C, V'azquez H, Dappe Y J, Ortega J and Flores F 2008 Phys. Rev. Lett. 100 027601
[38] Ellis T S, Park K T, Ulrich M D S L, Hulbert J E and Rowe J 2006 Appl. Phys. 100 093515
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Novel closed-cycle reaction mode for totally green production of Cu1.8Se nanoparticles based on laser-generated Se colloidal solution
Zhangyu Gu(顾张彧), Yisong Fan(范一松), Yixing Ye(叶一星), Yunyu Cai(蔡云雨), Jun Liu(刘俊), Shouliang Wu(吴守良), Pengfei Li(李鹏飞), Junhua Hu(胡俊华), Changhao Liang(梁长浩), and Yao Ma(马垚). Chin. Phys. B, 2022, 31(7): 078102.
[10] Mg-doped layered oxide cathode for Na-ion batteries
Yuejun Ding(丁月君), Feixiang Ding(丁飞翔), Xiaohui Rong(容晓晖), Yaxiang Lu(陆雅翔), and Yong-Sheng Hu(胡勇胜). Chin. Phys. B, 2022, 31(6): 068201.
[11] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[12] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[13] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[14] Effect of Cu doping on the secondary electron yield of carbon films on Ag-plated aluminum alloy
Tiancun Hu(胡天存), Shukai Zhu(朱淑凯), Yanan Zhao(赵亚楠), Xuan Sun(孙璇), Jing Yang(杨晶), Yun He(何鋆), Xinbo Wang(王新波), Chunjiang Bai(白春江), He Bai(白鹤), Huan Wei(魏焕), Meng Cao(曹猛), Zhongqiang Hu(胡忠强), Ming Liu(刘明), and Wanzhao Cui(崔万照). Chin. Phys. B, 2022, 31(4): 047901.
[15] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
No Suggested Reading articles found!