Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 067201    DOI: 10.1088/1674-1056/22/6/067201
Special Issue: TOPICAL REVIEW — Topological insulator
TOPICAL REVIEW—Topological insulator Prev   Next  

Spin Chern numbers and time-reversal-symmetry-broken quantum spin Hall effect

Sheng Li (盛利)a, Li Hui-Chao (李会超)a, Yang Yun-You (杨运友)a, Sheng Dong-Ning (盛冬宁)b, Xing Ding-Yu (邢定钰)a
a National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China;
b Department of Physics and Astronomy, California State University, Northridge, California 91330, USA
Abstract  The quantum spin Hall (QSH) effect is considered to be unstable to perturbations violating the time-reversal (TR) symmetry. We review some recent developments in the search of the QSH effect in the absence of the TR symmetry. The possibility to realize a robust QSH effect by artificial removal of the TR symmetry of the edge states is explored. As a useful tool to characterize topological phases without the TR symmetry, the spin-Chern number theory is introduced.
Keywords:  spin-polarized transport      quantum spin Hall effect      surface state      edge state      topological insulator  
Received:  17 April 2013      Accepted manuscript online: 
PACS:  72.25.-b (Spin polarized transport)  
  73.43.-f (Quantum Hall effects)  
  73.20.At (Surface states, band structure, electron density of states)  
  73.50.-h (Electronic transport phenomena in thin films)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2009CB929504, 2011CB922103, and 2010CB923400), the National Natural Science Foundation of China (Grant Nos. 11225420, 11074110, 11174125, 11074109, and 91021003), the Priority Academic Program Development of Jiangsu Higher Education Institutions, China, the US NSF (Grant Nos. DMR-0906816 and DMR-1205734), and Princeton MRSEC (Grant No. DMR-0819860).
Corresponding Authors:  Sheng Dong-Ning, Xing Ding-Yu     E-mail:  shengli@nju.edu.cn; dyxing@nju.edu.cn

Cite this article: 

Sheng Li (盛利), Li Hui-Chao (李会超), Yang Yun-You (杨运友), Sheng Dong-Ning (盛冬宁), Xing Ding-Yu (邢定钰) Spin Chern numbers and time-reversal-symmetry-broken quantum spin Hall effect 2013 Chin. Phys. B 22 067201

[1] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[2] Bernevig B A and Zhang S C 2006 Phys. Rev. Lett. 96 106802
[3] König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp LW, Qi X L and Zhang S C 2007 Science 318 766
[4] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[5] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
[6] Sheng L, Sheng D N, Ting C S and Haldane F D M 2005 Phys. Rev.Lett. 95 136602
[7] Wu C, Bernevig B A and Zhang S C 2006 Phys. Rev. Lett. 96 106401
[8] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[9] Sheng D N, Weng Z Y, Sheng L and Haldane F D M 2006 Phys. Rev.Lett. 97 036808
[10] Prodan E 2009 Phys. Rev. B 80 125327
[11] Li H C, Sheng L, Sheng D N and Xing D Y 2010 Phys. Rev. B 82165104
[12] Moore J E and Balents L 2007 Phys. Rev. B 75 121306
[13] Fu L and Kane C L 2007 Phys. Rev. B 76 045302
[14] Fu L, Kane C L and Mele E J 2007 Phys. Rev. Lett. 98 106803
[15] Zhang H J, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat.Phys. 5 438
[16] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[17] Qi X L and Zhang S C 2010 Phys. Today 63 33
[18] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
[19] Qi X L, Hughes T and Zhang S C 2008 Phys. Rev. B 78 195424
[20] Essin A M, Moore J E and Vanderbilt D 2009 Phys. Rev. Lett. 102146805
[21] Hsieh D, Qian D, Wray L, Xia Y, Hor Y S, Cava R J and Hasan M Z2008 Nature 452 970
[22] Hsieh D, Xia Y, Wray L, Qian D, Pal A, Dil J H, Osterwalder J, MeierF, Bihlmayer G, Kane C L, Hor Y S, Cava R J and Hasan M Z 2009Science 323 919
[23] Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D,Hor Y S, Cava R J and Hasan M Z 2009 Nat. Phys. 5 398
[24] Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang HJ, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z and ShenZ X 2009 Science 325 178
[25] Roushan P, Seo J, Parker C V, Hor Y S, Hsieh D, Qian D, RichardellaA, Hasan M Z, Cava R J and Yazdani A 2009 Nature 460 1106
[26] Zhang T, Cheng P, Chen X, Jia J F, Ma X C, He K, Wang L L, ZhangH J, Dai X, Fang Z, Xie X C and Xue Q K 2009 Phys. Rev. Lett. 103266803
[27] Jiang H, Cheng S, Sun Q F and Xie X C 2009 Phys. Rev. Lett. 103036803
[28] Laughlin R B 1981 Phys. Rev. B 23 5632
[29] Fu L and Kane C L 2006 Phys. Rev. B 74 195312
[30] Yang Y, Xu Z, Sheng L, Wang B G, Xing D Y and Sheng D N 2011Phys. Rev. Lett. 107 066602
[31] Qi X L, Wu Y S and Zhang S C 2006 Phys. Rev. B 74 085308
[32] Qi X L, Hughes T L and Zhang S C 2008 Phys. Rev. B 78 195424
[33] Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2008 Phys. Rev. Lett.101 146802
[34] Yu R, ZhangW, Zhang H J, Zhang S C, Dai X and Fang Z 2010 Science329 61
[35] Qiao Z H, Yang S Y A, Feng W X, Tse W K, Ding J, Yao Y G, WangJ and Niu Q 2010 Phys. Rev. B 82 161414
[36] Chang C Z, et al. 2013 Science 399 1582
[37] Xu Z, Sheng L, Xing D Y, Prodan E and Sheng D N 2012 Phys. Rev. B85 075115
[38] Xu Z, Sheng L, Shen R,Wang B and Xing D Y 2013 J. Phys.: Condens.Matter 25 065501
[39] Li H C, Sheng L and Xing D Y 2012 Phys. Rev. Lett. 108 196806
[40] Li H C, Sheng L, Shen R, Shao L B, Wang B G, Sheng D N and XingD Y 2013 cond-mat/1301.6460
[41] Shan W Y, Lu H Z and Shen S Q 2010 New J. Phys. 12 043048
[42] Lu H Z, Shan W Y, Yao W, Niu Q and Shen S Q 2010 Phys. Rev. B 81115407
[43] Brüne C, Liu C X, Novik E G, Hankiewicz E M, Buhmann H, Chen YL, Qi X L, Shen Z X, Zhang S C and Molenkamp LW2011 Phys. Rev.Lett. 106 126803
[44] Sheng L, Xing D Y, Sheng D N and Ting C S 1997 Phys. Rev. Lett. 791710
[45] Liu Q, Liu C X, Xu C K, Qi X L and Zhang S C 2009 Phys. Rev. Lett.102 156603
[46] König M, Buhmann H, Molenkamp L W, Hughes T, Liu C X, Qi X Land Zhang S C 2008 J. Phys. Soc. Jpn. 77 031007
[47] Smith D L and Mailhiot C 1990 Rev. Mod. Phys. 62 173
[48] Yang Y, Li H, Sheng L, Shen R, Sheng D N and Xing D Y 2013 condmat/1301.1618
[49] Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev.B 83 205101
[50] Burkov A A and Balents L 2011 Phys. Rev. Lett. 107 127205
[51] Sun K, Liu W V, Hemmerich A and Sarma S D 2011 Nat. Phys. 8 67
[52] Fang C, Gilbert M J, Dai X and Bernevig B A 2012 Phys. Rev. Lett.108 266802
[1] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[2] Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜). Chin. Phys. B, 2023, 32(2): 020305.
[3] Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc
Mei-Ling Lu(卢美玲), Yao Wang(王瑶), He-Zhi Zhang(张鹤之), Hao-Lin Chen(陈昊林), Tian-Yuan Cui(崔天元), and Xi Luo(罗熙). Chin. Phys. B, 2023, 32(2): 027301.
[4] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
[5] High Chern number phase in topological insulator multilayer structures: A Dirac cone model study
Yi-Xiang Wang(王义翔) and Fu-Xiang Li(李福祥). Chin. Phys. B, 2022, 31(9): 090501.
[6] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[7] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[8] Effects of phosphorus doping on the physical properties of axion insulator candidate EuIn2As2
Feihao Pan(潘斐豪), Congkuan Tian(田丛宽), Jiale Huang(黄嘉乐), Daye Xu(徐大业), Jinchen Wang (汪晋辰), Peng Cheng(程鹏), Juanjuan Liu(刘娟娟), and Hongxia Zhang(张红霞). Chin. Phys. B, 2022, 31(5): 057502.
[9] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
[10] Quantum transport signatures of non-trivial topological edge states in a ring-shaped Su-Schrieffer-Heeger double-chain system
Cheng-Zhi Ye(叶成芝), Lan-Yun Zhang(张蓝云), and Hai-Bin Xue(薛海斌). Chin. Phys. B, 2022, 31(2): 027304.
[11] Change-over switch for quantum states transfer with topological channels in a circuit-QED lattice
Liu-Yong Cheng(程留永), Li-Na Zheng(郑黎娜), Ruixiang Wu(吴瑞祥), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(2): 020305.
[12] Determination of the surface states from the ultrafast electronic states in a thermoelectric material
Tongyao Wu(吴桐尧), Hongyuan Wang(王洪远), Yuanyuan Yang(杨媛媛), Shaofeng Duan(段绍峰), Chaozhi Huang(黄超之), Tianwei Tang(唐天威), Yanfeng Guo(郭艳峰), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2022, 31(2): 027902.
[13] Topological photonic states in gyromagnetic photonic crystals: Physics, properties, and applications
Jianfeng Chen(陈剑锋) and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(11): 114207.
[14] Ac Josephson effect in Corbino-geometry Josephson junctions constructed on Bi2Te3 surface
Yunxiao Zhang(张云潇), Zhaozheng Lyu(吕昭征), Xiang Wang(王翔), Enna Zhuo(卓恩娜), Xiaopei Sun(孙晓培), Bing Li(李冰), Jie Shen(沈洁), Guangtong Liu(刘广同), Fanming Qu(屈凡明), and Li Lü(吕力). Chin. Phys. B, 2022, 31(10): 107402.
[15] Topological phases and type-II edge state in two-leg-coupled Su-Schrieffer-Heeger chains
Tianqi Luo(罗天琦), Xin Guan(关欣), Jingtao Fan(樊景涛), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 014208.
No Suggested Reading articles found!