Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 057201    DOI: 10.1088/1674-1056/22/5/057201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electrical transport and thermoelectric properties of Ni-doped perovskite-type YCo1-xNixO3 (0≤ x ≤0.07) prepared by sol-gel process

Liu Yi (刘义), Li Hai-Jin (李海金), Zhang Qing (张清), Li Yong (李勇), Liu Hou-Tong (刘厚通)
School of Mathematics and Physics, Anhui University of Technology, Ma'anshan 243032, China
Abstract  Electrical transport and thermoelectric properties of Ni-doped YCo1-xNixO3 (0≤ x ≤0.07), prepared by using sol-gel process, are investigated in a temperature range from 100 to 780 K. The results show that with the increase of Ni doping content, the values of DC resistivity of YCo1-xNixO3 decrease, but carrier concentration increases. The temperature dependences of the resistivity for YCo1-xNixO3 are found to follow a relation of lnρ ∝ 1/T in a low-temperature rang (LTR) (T<~304 K for x=0; ~ 230 K < T <~500 K for x=0.02, 0.05, and 0.07) and high-temperature range (HTR) (T > ~ 655 K for all compounds), respectively. The estimated apparent activation energies for conduction Ea1 in LRT and Ea2 in HTR are both found to decrease monotonically with doping content increasing. At very low temperatures (T < ~ 230 K), Mott's law is observed for YCo1-xNixO3 (x ≥ 0.02), indicating that considerable localized states form in the heavy doping compounds. Although the Seebeck coefficient of the compound decreases after Ni doping, the power factor of YCo1-xNixO3 is enhanced remarkably in a temperature range from 300 to 740 K, i.e., a 6-fold increase is achieved at 500 K for YCo0.98Ni0.02O3, indicating that the high-temperature thermoelectric property of YCoO3 can be improved by partial substitution of Ni for Co.
Keywords:  perovskite cobalt oxides      sol-gel process      electrical transport      thermoelectric property  
Received:  13 October 2012      Revised:  05 November 2012      Accepted manuscript online: 
PACS:  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  72.20.Ee (Mobility edges; hopping transport)  
  72.80.Ga (Transition-metal compounds)  
Fund: Project supported by the Key Laboratory of Novel Thin Film Solar Cells, Chinese Academy of Sciences (Grant No. KF201101), the Key Science Foundation of Higher Education Institutions of Anhui Province, China (Grant Nos. KJ2011A053 and KJ2012Z034), and the National Natural Science Foundation of China (Grant Nos. 51202005, 11204005, and 41075027).
Corresponding Authors:  Liu Yi     E-mail:  yliu6@ahut.edu.cn

Cite this article: 

Liu Yi (刘义), Li Hai-Jin (李海金), Zhang Qing (张清), Li Yong (李勇), Liu Hou-Tong (刘厚通) Electrical transport and thermoelectric properties of Ni-doped perovskite-type YCo1-xNixO3 (0≤ x ≤0.07) prepared by sol-gel process 2013 Chin. Phys. B 22 057201

[1] Androulakis J, Pantelis M and Giapintzakis J 2004 Appl. Phys. Lett. 84 1099
[2] Berggold K, Kriener M, Zobel C, Reichl A, Reuther M, Muller R, Freimüth A and Lorenz T 2005 Phys. Rev. B 72 155
[3] Zhang X, Li X M, Chen T L and Chen L D 2006 J. Cryst. Growth 286 1
[4] Ji-Woong M, Won-Seon S, Hiroki O, Takasi O and Kunihito K 2000 J. Mater. Chem. 10 2007
[5] Ji-Woong M, Yoshitake M, Won-Seon S and Kunihito K 2001 Mater. Lett. 48 225
[6] Ohtani T, Kuroda K, Matsugami K and Katoh D 2000 J. Eur. Ceram. Soc. 20 2721
[7] Kostogloudis G Ch, Vasilakos N and Ftikos Ch 1998 Solid State Ionics 106 207
[8] Shang J, Zhang H, Li Y, Cao M G and Zhang P X 2010 Chin. Phys. B 19 107203
[9] Wang H C, Wang C L, Zhao M L, Liu J, Su W B, Yin N and Mei L M 2009 Chin. Phys. Lett. 26 107301
[10] Rossignol C, Ralph J M, Bae J M and Vaughey J T 2004 Solid State Ionics 175 59
[11] Bansal N P and Zhong Z M 2006 J. Powder Sources 158 148
[12] Emilio D and Carlos R M 2006 Mater. Lett. 60 1613
[13] Thornton G, Morrison F C, Partington S, Tofield B C and Williams D E 1988 J. Phys. C: Solid State Phys. 21 287
[14] Knížek K, Jirák Z, Hejtmánek J, Veverka M, Maryško M, Maris G and Palstra T T M 2005 Eur. Phys. J. B 47 213
[15] Ding B F and Zhou S Q 2011 Chin. Phys. B 20 127701
[16] Cai L G, Liu F M and Zhong W W 2010 Chin. Phys. B 19 097101
[17] Bao J C, Zhang N, Cao H X and Geng T 2008 Chin. Phys. B 17 317
[18] Feng J F, Huang Y H, Zhao J G, Han X F, Zhan W S, Zhao K and Wong H K 2005 Chin. Phys. 14 1879
[19] Yu Z, Du Y W, Wang J H and Liu G Q 2004 Chin. Phys. 13 90
[20] Liu X M, Yang M, Lu Z, Pei L, Liu J and Su W H 1999 Chin. Phys. 8 690
[21] Arun M 2004 Science 303 777
[22] Bhandari C M and Rowe D M 1995 Optimization of Carrier Concentration (Boca Raton: CRC Press)
[23] Zhou A J, Zhu T J and Zhao X B 2006 Mater. Sci. Eng. B 128 174
[24] Bhide V G, Rajoria D S, Reddy Y S, Rama R G and Rao C N R 1973 Phys. Rev. B 8 5028
[25] Demazeau G, Pouchard M and Hagenmüller P 1974 J. Solid State Chem. 9 202
[26] Mehta A, Berliner R and Smith R W 1997 J. Solid State Chem. 130 192
[27] Knížek K, Jirák Z, Hejtmánek J, Veverka M, Maryško M, Hauback B C and Fjellag H 2006 Phys. Rev. B 73 21443
[28] Liu Y and Qin X Y 2006 J. Phys. Chem. Solids 67 1893
[29] Liu Y, Qin X Y, Wang Y F, Xin H X, Zhang J and Li H J 2007 J. Appl. Phys. 101 083709
[30] Michel C R, Gago A S, Guzmán-Colín H, López-Mena E R, Lardizábal D and Buassi-Monroy O S 2004 Mater. Res. Bull. 39 2295
[31] Hejtmánek J, Jirák Z, Knížek K, Maryško M, Veverka M and Fujishiro H 2004 J. Magn. Magn. Mater. 272 e283
[32] Hejtmánek J, Jirák Z, Knížek K and Fujishiro H 2004 Proceedings of the 2nd European Conference on Thermoelectrics of European Thermoelectric Society, September 15-17, 2004 Kraków, Poland
[33] Zheng G H, Sun Y P, Zhu X B and Song W H 2006 Solid Sate Commun. 137 326
[34] Yamaguchi S, Okimoto Y and Tokura Y 1996 Phys. Rev. B 54 R11022
[35] Hadjarab B, Bassaid S, Bouguelia A and Trari M 2006 Physica C 439 67
[36] Xin H X, Qin X Y, Zhu X G and Liu Y 2006 J. Phys. D: Appl. Phys. 39 375
[37] Xu G J, Ryoji F, Masahiro S, Ichiro M and Zhou Y Q 2002 Appl. Phys. Lett. 80 3760
[38] Fisher B, Patlagan L, Reisner G M and Knizhnik A 2000 Phys. Rev. B 61 470
[1] Structural evolution-enabled BiFeO3 modulated by strontium doping with enhanced dielectric, optical and superparamagneticproperties by a modified sol-gel method
Sharon V S, Veena Gopalan E, and Malini K A. Chin. Phys. B, 2023, 32(3): 037504.
[2] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[3] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[4] Structural and electrical transport properties of charge density wave material LaAgSb2 under high pressure
Bowen Zhang(张博文), Chao An(安超), Xuliang Chen(陈绪亮), Ying Zhou(周颖), Yonghui Zhou(周永惠), Yifang Yuan(袁亦方), Chunhua Chen(陈春华), Lili Zhang(张丽丽), Xiaoping Yang(杨晓萍), and Zhaorong Yang(杨昭荣). Chin. Phys. B, 2021, 30(7): 076201.
[5] Characterization, spectroscopic investigation of defects by positron annihilation, and possible application of synthesized PbO nanoparticles
Sk Irsad Ali, Anjan Das, Apoorva Agrawal, Shubharaj Mukherjee, Maudud Ahmed, P M G Nambissan, Samiran Mandal, and Atis Chandra Mandal. Chin. Phys. B, 2021, 30(2): 026103.
[6] Evolution of electrical and magnetotransport properties with lattice strain in La0.7Sr0.3MnO3 film
Zhi-Bin Ling(令志斌), Qing-Ye Zhang(张庆业), Cheng-Peng Yang(杨成鹏), Xiao-Tian Li(李晓天), Wen-Shuang Liang(梁文双), Yi-Qian Wang(王乙潜), Huai-Wen Yang(杨怀文), Ji-Rong Sun(孙继荣). Chin. Phys. B, 2020, 29(9): 096802.
[7] Erratum to “Indium doping effect on properties of ZnO nanoparticles synthesized by sol-gel method”
S Mourad, J El Ghoul, K Omri, K Khirouni. Chin. Phys. B, 2020, 29(3): 039901.
[8] Indium doping effect on properties of ZnO nanoparticles synthesized by sol-gel method
S Mourad, J El Ghoul, K Omri, K Khirouni. Chin. Phys. B, 2019, 28(4): 047701.
[9] Low-energy (40 keV) proton irradiation of YBa2Cu3O7-x thin films:Micro-Raman characterization and electrical transport properties
San-Sheng Wang(王三胜), Fang Li(李方), Han Wu(吴晗), Yu Zhang(张玉), Suleman Mu?ammad(穆罕默德苏尔曼), Peng Zhao(赵鹏), Xiao-Yun Le(乐小云), Zhi-Song Xiao(肖志松), Li-Xiang Jiang(姜利祥), Xue-Dong Ou(欧学东), Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2019, 28(2): 027401.
[10] Structural and electrical transport properties of Dirac-like semimetal PdSn4 under high pressure
Bowen Zhang(张博文), Chao An(安超), Yonghui Zhou(周永惠), Xuliang Chen(陈绪亮), Ying Zhou(周颖), Chunhua Chen(陈春华), Yifang Yuan(袁亦方), Zhaorong Yang(杨昭荣). Chin. Phys. B, 2019, 28(12): 126202.
[11] Excellent thermal stability and thermoelectric properties of Pnma-phase SnSe in middle temperature aerobic environment
Yu Tang(唐语), Decong Li(李德聪), Zhong Chen(陈钟), Shuping Deng(邓书平), Luqi Sun(孙璐琪), Wenting Liu(刘文婷), Lanxian Shen(申兰先), Shukang Deng(邓书康). Chin. Phys. B, 2018, 27(11): 118105.
[12] Thermal stability and electrical transport properties of Ge/Sn-codoped single crystalline β-Zn4Sb3 prepared by the Sn-flux method
Hong-xia Liu(刘虹霞), Shu-ping Deng(邓书平), De-cong Li(李德聪), Lan-xian Shen(申兰先), Shu-kang Deng(邓书康). Chin. Phys. B, 2017, 26(2): 027401.
[13] Thermoelectric properties of Sr0.61Ba0.39Nb2O6 -δ ceramics in different oxygen-reduction conditions
Li Yi (李宜), Liu Jian (刘剑), Wang Chun-Lei (王春雷), Su Wen-Bin (苏文斌), Zhu Yuan-Hu (祝元虎), Li Ji-Chao (李吉超), Mei Liang-Mo (梅良模). Chin. Phys. B, 2015, 24(4): 047201.
[14] Electrical transport properties of YCo1-xMnxO3 (0≤ x ≤ 0.2) prepared by sol-gel process
Liu Yi (刘义), Li Hai-Jin (李海金). Chin. Phys. B, 2015, 24(4): 047202.
[15] In situ electrical transport measurement of superconductive ultrathin films
Liu Can-Hua (刘灿华), Jia Jin-Feng (贾金锋). Chin. Phys. B, 2015, 24(11): 110702.
No Suggested Reading articles found!