Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 058103    DOI: 10.1088/1674-1056/22/5/058103
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Optoelectronic characteristics of CuO nanorods

Xie De-Hua (谢德华), Wang Fei-Fei (王菲菲), Lü Hao (吕浩), Du Min-Yong (杜敏永), Xu Wen-Jie (徐文杰)
School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China
Abstract  Optoelectronic characteristics of p-type CuO nanorods, synthesized by a simple hydrothermal method, were investigated at different atmospheres and oxygen pressures. The CuO nanorods have lower resistance in air than in vacuum, unlike the n-type semiconductors. This is explained in terms of the surface accumulation conduction. Measurements at different oxygen pressures indicate that oxygen has an important effect on the optoelectronic properties of p-type nanomaterials.
Keywords:  CuO nanorod      optoelectronic characteristics  
Received:  20 September 2012      Revised:  24 October 2012      Accepted manuscript online: 
PACS:  81.07.Gf (Nanowires)  
  68.43.-h (Chemisorption/physisorption: adsorbates on surfaces)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11144010, 11004169, and 11074105), the Research Award Fund for Outstanding Middle-aged and Young Scientist of Shandong Province, China (Grant No. BS2011ZZ004), and the University Student's Science and Technology Innovation Fund of Ludong University, China (Grant No. 12cg030).
Corresponding Authors:  Wang Fei-Fei     E-mail:  ffwang@ldu.edu.cn

Cite this article: 

Xie De-Hua (谢德华), Wang Fei-Fei (王菲菲), Lü Hao (吕浩), Du Min-Yong (杜敏永), Xu Wen-Jie (徐文杰) Optoelectronic characteristics of CuO nanorods 2013 Chin. Phys. B 22 058103

[1] Fennimore A M, Yuzvinsky T D, Han W Q, Fuhrer M S, Cumings J and Zettl A 2003 Nature 424 408
[2] Sazonova V, Yaish Y, Ustunel H, Roundy D, Arias T A and McEuen P L 2004 Nature 431 284
[3] Wang Z L and Song J H 2006 Science 312 242
[4] Jacopin G, Rigutti L, Bellei S, Lavenus P, Julien F H, Davydov A V, Tsvetkov D, Bertness K A, Sanford N A, Schlager J B and Tchernycheva M 2012 Nanotechnology 23 325701
[5] Wang D Q, Zhou Z Y, Zhu R and Ye X Y 2008 Chin. Phys. B 17 3875
[6] Kim Y C, Yoon C H, Park J, Yoon J, Han N S, Song J K, Park S M and Ha J S 2012 Thin Solid Films 520 6471
[7] Li Q H, Wan Q, Liang Y X and Wang T H 2004 Appl. Phys. Lett. 84 4556
[8] Arnold M S, Avouris P, Pan Z W and Wang Z L 2003 J. Phys. Chem. B 107 659
[9] Kind H, Yan H, Messer B, Law M and Yang P 2002 Adv. Mater. 14 158
[10] Liu Z, Zhang D, Han S, Li C, Tang T and Jin W 2003 Adv. Mater. 15 1754
[11] Jiang W, Gao H, Xu L L, Ma J N, Zhang E, Wei P and Lin J Q 2011 Chin. Phys. B 20 037307
[12] Wang D Q, Zhou Z Y, Zhu R and Ye X Y 2008 Chin. Phys. B 17 3875
[13] Gao S Y, Yang S X, Shu J, Zhang S X, Li Z D and Jiang K 2008 J. Phys. Chem. C 112 19324
[14] Li L, Zhan Y, Zheng Q, Zheng Y, Lin X and Li D 2007 Catal. Lett. 118 91
[15] Zou G F, Li H, Zhang D W, Xiong K, Dong C and Qian Y T 2006 J. Phys. Chem. B 110 1632
[16] Liu Y, Liao L, Li J and Pan C 2007 J. Phys. Chem. C 111 5050
[17] Chen J, Deng S Z, Xu N S, Zhang W X, Wen X G and Yang S H 2003 Appl. Phys. Lett. 83 746
[18] Lu C H, Qi L M, Yang J H, Zhang D Y, Wu N Z and Ma J M 2004 J. Phys. Chem. B 108 17825
[19] Zhu Y W, Yu T, Cheong F C, Xu X J, Lim C T and Tan V B C 2005 Nanotechnology 16 88
[20] Chen J, Huang N Y, Deng S Z, She J C and Xu N S 2005 Appl. Phys. Lett. 86 151107
[21] Hsieh C T and Chen J M 2003 Appl. Phys. Lett. 82 1965
[22] Jiang X C, Herricks T and Xia Y N 2002 Nano. Lett. 2 1333
[23] Wang C, Fu X Q, Xue X Y, Wang Y G and Wang T H 2007 Nanotechnology 18 145506
[24] Wan Q, Li Q H, Chen Y J, Wang T H, He X L and Li J P 2004 Appl. Phys. Lett. 84 3654
[25] Feng P, Wan Q and Wang T H 2005 Appl. Phys. Lett. 87 213111
[26] Koffyberg F P and Benko F A 1982 J. Appl. Phys. 53 1173
[27] Grätzel M 2001 Science 414 338
[1] One-dimensional sp carbon: Synthesis, properties, and modifications
Chao-Fan Lv(吕超凡), Xi-Gui Yang(杨西贵), and Chong-Xin Shan(单崇新). Chin. Phys. B, 2022, 31(12): 128103.
[2] Mode characteristics of nested eccentric waveguides constructed by two cylindrical nanowires coated with graphene
Ji Liu(刘吉), Lixia Yu(于丽霞), and Wenrui Xue(薛文瑞). Chin. Phys. B, 2022, 31(3): 036803.
[3] Thermoelectric characteristics of flexible reduced graphene oxide/silver selenide nanowire composites prepared by a facile vacuum filtration process
Zuo Xiao(肖佐), Yong Du(杜永), Qiufeng Meng(孟秋风), and Lei Wang(王磊). Chin. Phys. B, 2022, 31(2): 028103.
[4] Molecular dynamics study of coupled layer thickness and strain rate effect on tensile behaviors of Ti/Ni multilayered nanowires
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼), Lan-Ting Liu(刘兰亭), Lian-Yang Chen(陈连阳), Meng-Long Su(宿梦龙), and Min-Rong An(安敏荣). Chin. Phys. B, 2021, 30(9): 096201.
[5] A simple method to synthesize worm-like AlN nanowires and its field emission studies
Qi Liang(梁琦), Meng-Qi Yang(杨孟骐), Chang-Hao Wang(王长昊), and Ru-Zhi Wang(王如志). Chin. Phys. B, 2021, 30(8): 087302.
[6] Coulomb blockade and hopping transport behaviors of donor-induced quantum dots in junctionless transistors
Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Fu-Hua Yang(杨富华). Chin. Phys. B, 2020, 29(3): 038104.
[7] Comparative study on transport properties of N-, P-, and As-doped SiC nanowires: Calculated based on first principles
Ya-Lin Li(李亚林), Pei Gong(龚裴), Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2020, 29(3): 037304.
[8] Fluorescence spectra of colloidal self-assembled CdSe nano-wire on substrate of porous Al2O3/Au nanoparticles
Xin Zhang(张欣), Li-Ping Shao(邵丽萍), Man Peng(彭嫚), Zhong-Chen Bai(白忠臣), Zheng-Ping Zhang(张正平), Shui-Jie Qin(秦水介). Chin. Phys. B, 2019, 28(6): 068103.
[9] Synthesis and characterization of β-Ga2O3@GaN nanowires
Shuang Wang(王爽), Yue-Wen Li(李悦文), Xiang-Qian Xiu(修向前), Li-Ying Zhang(张丽颖), Xue-Mei Hua(华雪梅), Zi-Li Xie(谢自力), Tao Tao(陶涛), Bin Liu(刘斌), Peng Chen(陈鹏), Rong Zhang(张荣), You-Dou Zheng(郑有炓). Chin. Phys. B, 2019, 28(2): 028104.
[10] Transport spectroscopy through dopant atom array in silicon junctionless nanowire transistors
Xiao-Song Zhao(赵晓松), Wei-Hua Han(韩伟华), Yang-Yan Guo(郭仰岩), Ya-Mei Dou(窦亚梅), Fu-Hua Yang(杨富华). Chin. Phys. B, 2018, 27(9): 097310.
[11] Influence of dopant concentration on electrical quantum transport behaviors in junctionless nanowire transistors
Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Xiao-Song Zhao(赵晓松), Yang-Yan Guo(郭仰岩), Ya-Mei Dou(窦亚梅), Fu-Hua Yang(杨富华). Chin. Phys. B, 2018, 27(8): 088106.
[12] Optoelectronic properties of single-crystalline GaInAsSb quaternary alloy nanowires
Meng-Zi Li(李梦姿), Xin-Liang Chen(陈新亮), Hong-Lai Li(李洪来), Xue-Hong Zhang(张学红), Zhao-Yang Qi(祁朝阳), Xiao-Xia Wang(王晓霞), Peng Fan(范鹏), Qing-Lin Zhang(张清林), Xiao-Li Zhu(朱小莉), Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2018, 27(7): 078101.
[13] Phase transition of a diblock copolymer and homopolymer hybrid system induced by different properties of nanorods
Xiao-bo Geng(耿晓波), Jun-xing Pan(潘俊星), Jin-jun Zhang(张进军), Min-na Sun(孙敏娜), Jian-yong Cen(岑建勇). Chin. Phys. B, 2018, 27(5): 058102.
[14] Thermal conductivity of nanowires
Zhongwei Zhang(张忠卫), Jie Chen(陈杰). Chin. Phys. B, 2018, 27(3): 035101.
[15] One-dimensional ZnO nanostructure-based optoelectronics
Zheng Zhang(张铮), Zhuo Kang(康卓), Qingliang Liao(廖庆亮), Xiaomei Zhang(张晓梅), Yue Zhang(张跃). Chin. Phys. B, 2017, 26(11): 118102.
No Suggested Reading articles found!