Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 050303    DOI: 10.1088/1674-1056/22/5/050303
GENERAL Prev   Next  

Correlation dynamics of two-parameter qubit-qutrit states under decoherence

Yuan Hao (袁浩)a, Wei Lian-Fu (韦联福)a b
a Laboratory of Quantum Optoelectronics, School of Physics and Technology, Southwest Jiaotong University, Chengdu 610031, China;
b State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
Abstract  We investigate the dynamics of correlations for two-parameter qubit-qutrit states under various local decoherence channels including depahsing, phase-flip, bit- and trit-flip, bit- and trit-phase-flip, and depolarizing channels. We find that, under certain conditions, the classical correlations may not be affected by the noise or decay monotonically. The quantum correlations measured by measurement-induced disturbance (MID) show three types of dynamical behaviors: (i) monotonic decay to zero, (ii) monotonic decay to a nonzero steady value, (iii) increase from zero and then decrease to zero in a monotonic way. Consequently, we find that, differing from the dynamics of entanglement, the present classical and quantum correlations do not reveal sudden death behavior.
Keywords:  classical correlations      measurement-induced disturbance      qubit-qutrit states      decoherence  
Received:  26 July 2012      Revised:  26 October 2012      Accepted manuscript online: 
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 90921010 and 11174373), the National Basic Research Program of China (Grant No. 2010CB923104), and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. SWJTU09CX078 and 2010XS47).
Corresponding Authors:  Wei Lian-Fu     E-mail:  weilianfu@gmail.com

Cite this article: 

Yuan Hao (袁浩), Wei Lian-Fu (韦联福) Correlation dynamics of two-parameter qubit-qutrit states under decoherence 2013 Chin. Phys. B 22 050303

[1] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[2] Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502
[3] Lanyon B P, Barbieri M, Almeida M P and White A G 2008 Phys. Rev. Lett. 101 200501
[4] Ferraro A, Aolita L, Cavalcant D, Cucchietti F M and Acín A 2010 Phys. Rev. A 81 052318
[5] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[6] Henderson L and Vedral V 2001 J. Phys. A 34 6899
[7] Luo S 2008 Phys. Rev. A 77 042303
[8] Wang L C, Shen J and Yi X X 2011 Chin. Phys. B. 20 050306
[9] Qian Y and Xu J B 2012 Chin. Phys. B. 21 030305
[10] Dakić B, Vedral V and Brukner Č 2010 Phys. Rev. Lett. 105 190502
[11] Luo S and Fu S 2010 Phys. Rev. A 82 034302
[12] Luo S 2008 Phys. Rev. A 77 022301
[13] Maziero J, Céleri L C, Serra R M and Vedral V 2009 Phys. Rev. A 80 044102
[14] Werlang T, Souza S, Fanchini F F and Boas Villas C J 2009 Phys. Rev. A 80 024103
[15] Maziero J, Werlang T, Fanchini F F, Céleri L C and Serra R M 2010 Phys. Rev. A 81 022116
[16] Li B, Wang Z X and Fei S M 2011 Phys. Rev. A 83 022321
[17] Lu X M, Xi Z, Sun Z and Wang X 2010 Quantum Inf. Comput. 10 994
[18] Yuan H and Wei L F 2013 Commun. Theor. Phys. 59 17
[19] Song W, Yu L B , Dong P, Li D C, Yang M and Cao Z L 2011 arXiv:1112.4318[quant-ph]
[20] Ali M 2010 J. Phys. A 43 495303
[21] Vinjanampathy S and Rau A R P 2012 J. Phys. A 45 095303
[22] Karpat G and Gedik Z 2011 Phys. Lett. A 375 4166
[23] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[24] Chi D P and Lee S 2003 J. Phys. A 36 11503
[25] Neilsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[26] Wei H R, Ren B C and Deng F G 2013 Quant. Infor. Processing 12 1109
[27] Ann K and Jaeger G 2008 Phys. Lett. A 372 579
[28] Wei H R, Ren B C, Li T, Hua M and Deng F G 2012 Commun. Theor. Phys. 57 983
[1] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[2] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[3] Quantum to classical transition induced by a classically small influence
Wen-Lei Zhao(赵文垒), Quanlin Jie(揭泉林). Chin. Phys. B, 2020, 29(8): 080302.
[4] Geometric phase of an open double-quantum-dot system detected by a quantum point contact
Qian Du(杜倩), Kang Lan(蓝康), Yan-Hui Zhang(张延惠), Lu-Jing Jiang(姜露静). Chin. Phys. B, 2020, 29(3): 030302.
[5] The effect of phase fluctuation and beam splitter fluctuation on two-photon quantum random walk
Zijing Zhang(张子静), Feng Wang(王峰), Jie Song(宋杰), Yuan Zhao(赵远). Chin. Phys. B, 2020, 29(2): 020503.
[6] A two-dimensional quantum walk driven by a single two-side coin
Quan Lin(林泉), Hao Qin(秦豪) Kun-Kun Wang(王坤坤), Lei Xiao(肖磊), and Peng Xue(薛鹏). Chin. Phys. B, 2020, 29(11): 110303.
[7] Dipole-dipole interactions enhance non-Markovianity and protect information against dissipation
Munsif Jan, Xiao-Ye Xu(许小冶), Qin-Qin Wang(王琴琴), Zhe Chen(陈哲), Yong-Jian Han(韩永建), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2019, 28(9): 090303.
[8] A primary model of decoherence in neuronal microtubules based on the interaction Hamiltonian between microtubules and plasmon in neurons
Zuoxian Xiang(向左鲜), Chuanxiang Tang(唐传祥), Lixin Yan(颜立新). Chin. Phys. B, 2019, 28(4): 048701.
[9] Physics of quantum coherence in spin systems
Maimaitiyiming Tusun(麦麦提依明·吐孙), Xing Rong(荣星), Jiangfeng Du(杜江峰). Chin. Phys. B, 2019, 28(2): 024204.
[10] Enhancing von Neumann entropy by chaos in spin-orbit entanglement
Chen-Rong Liu(刘郴荣), Pei Yu(喻佩), Xian-Zhang Chen(陈宪章), Hong-Ya Xu(徐洪亚), Liang Huang(黄亮), Ying-Cheng Lai(来颖诚). Chin. Phys. B, 2019, 28(10): 100501.
[11] Boundary states for entanglement robustness under dephasing and bit flip channels
Hong-Mei Li(李红梅), Miao-Di Guo(郭苗迪), Rui Zhang(张锐), Xue-Mei Su(苏雪梅). Chin. Phys. B, 2019, 28(10): 100302.
[12] Decoherence for a two-qubit system in a spin-chain environment
Yang Yang(杨阳), An-Min Wang(王安民), Lian-Zhen Cao(曹连振), Jia-Qiang Zhao(赵加强), Huai-Xin Lu(逯怀新). Chin. Phys. B, 2018, 27(9): 090302.
[13] Classical-driving-assisted coherence dynamics and its conservation
De-Ying Gao(高德营), Qiang Gao(高强), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2018, 27(6): 060304.
[14] Decoherence of macroscopic objects from relativistic effect
Guo-Hui Dong(董国慧), Yu-Han Ma(马宇翰), Jing-Fu Chen(陈劲夫), Xin Wang(王欣), Chang-Pu Sun(孙昌璞). Chin. Phys. B, 2018, 27(10): 100301.
[15] Non-Gaussianity dynamics of two-mode squeezed number states subject to different types of noise based on cumulant theory
Shaohua Xiang(向少华), Xixiang Zhu(朱喜香), Kehui Song(宋克慧). Chin. Phys. B, 2018, 27(10): 100305.
No Suggested Reading articles found!