Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 047801    DOI: 10.1088/1674-1056/22/4/047801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Optical properties of ultra-thin InN layer embedded in InGaN matrix for light emitters

Yang Wei (杨薇), Wu Yi-Yang (武翌阳), Liu Ning-Yang (刘宁炀), Liu Lei (刘磊), Chen Zhao (陈钊), Hu Xiao-Dong (胡晓东)
State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
Abstract  We theoretically investigate the optical properties of ultra-thin InN layer embedded in InGaN matrix for light emitters. The peak emission wavelength extends from ultraviolet (374 nm) to green (536 nm) with InN quantum well thickness increasing from 1 monolayer to 2 monolayers, while the overlap of electron-hole wave function remains at a high level (larger than 90%). Increase of In content in InGaN matrix provides a better approach to longer wavelength emission, which only reduces the spontaneous emission rate slightly compared with the case of increasing In content of the conventional InGaN quantum well. Also, the transparency carrier density derived from gain spectrum is of the same order as that in the conventional blue laser diode. Our study provides skillful design on the development of novel structure InN-based light emitting diodes as well as laser diodes.
Keywords:  InN ultra-thin layer      spontaneous emission spectra      gain      laser diodes  
Received:  29 June 2012      Revised:  21 August 2012      Accepted manuscript online: 
PACS:  78.20.Bh (Theory, models, and numerical simulation)  
  78.55.Cr (III-V semiconductors)  
  78.67.De (Quantum wells)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61076013, 51272008, and 51102003), the National Basic Research Program of China (Grant No. 2012CB619304), the Beijing Municipal Science & Technology Commission (Grant No. D111100001711002), and the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20100001120014).
Corresponding Authors:  Hu Xiao-Dong     E-mail:  huxd@pku.edu.cn

Cite this article: 

Yang Wei (杨薇), Wu Yi-Yang (武翌阳), Liu Ning-Yang (刘宁炀), Liu Lei (刘磊), Chen Zhao (陈钊), Hu Xiao-Dong (胡晓东) Optical properties of ultra-thin InN layer embedded in InGaN matrix for light emitters 2013 Chin. Phys. B 22 047801

[1] Wu J, Walukiewicz W, Yu K M, Ager Iii J W, Haller E E, Lu H, Schaff W J, Saito Y and Nanishi Y 2002 Appl. Phys. Lett. 80 3967
[2] Takeuchi T, Wetzel C, Yamaguchi S, Sakai H, Amano H, Akasaki I, Kaneko Y, Nakagawa S, Yamaoka Y and Yamada N 1998 Appl. Phys. Lett. 73 1691
[3] Yoshikawa A, Che S B, Yamaguchi W, Saito H, Wang X Q, Ishitani Y and Hwang E S 2007 Appl. Phys. Lett. 90 073101
[4] Yoshikawa A, Che S, Ishitani Y and Wang X 2009 J. Cryst. Growth 311 2073
[5] Dimakis E, Nikiforov A Y, Thomidis C, Zhou L, Smith D J, Abell J, Kao C K and Moustakas T D 2008 Phys. Status Solidi (a) 205 1070
[6] Yuki A, Watanabe H, Che S B, Ishitani Y and Yoshikawa A 2009 Phys. Status Solidi (c) 6 S417
[7] Lin W, Li S and Kang J 2010 Appl. Phys. Lett. 96 101115
[8] APSYS Version 2008.06.01, Crosslight Software, Inc., 1995-2005
[9] Chuang S L and Chang C S 1997 Semicond. Sci. Technol. 12 252
[10] Bernardini F and Fiorentini V 2001 Phys. Rev. B 64 085207
[11] Vurgaftman I and Meyer J R 2003 J. Appl. Phys. 94 3675
[12] Wu J 2009 J. Appl. Phys. 106 011101
[13] Wu G G, Li W C, Shen C S, Gao F B, Liang H W, Wang H, Song L J and Du G T 2012 Appl. Phys. Lett. 100 103504
[14] Yeo Y, Chong T and Li M 1998 IEEE J. Quantum Electron. 34 1270
[15] Lu T P, Li S T, Zhang K, Liu C, Xiao G W, Zhou Y G, Zheng S W, Yin Y A, Wu L J, Wang H L and Yang X D 2011 Chin. Phys. B 20 108504
[16] Lu T P, Li S T, Zhang K, Liu C, Xiao G W, Zhou Y G, Zheng S W, Yin Y A, Wu L J, Wang H L and Yang X D 2011 Chin. Phys. B 20 098503
[17] Che S, Yuki A, Watanabe H, Ishitani Y and Yoshikawa A 2009 Appl. Phys. Express 2 021001
[18] Zhao H, Liu G and Tansu N 2010 Appl. Phys. Lett. 97 131114
[19] Yoshikawa A, Hashimoto N, Kikukawa N, Che S B and Ishitani Y 2005 Appl. Phys. Lett. 86 153115
[20] Ahn D, Chuang S L and Chang Y C 1988 J. Appl. Phys. 64 4056
[21] Nakamura S 1997 IEEE J. Sel. Top. Quantum Electron. 3 435
[22] Zhao H, Arif R, Ee Y K and Tansu N 2008 Opt. Quantum Electron. 40 301
[23] Yoshikawa A and Che S B 2008 Int. J. High Speed Electron. Syst. 18 993
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] Tolerance-enhanced SU(1,1) interferometers using asymmetric gain
Jian-Dong Zhang(张建东) and Shuai Wang(王帅). Chin. Phys. B, 2023, 32(1): 010306.
[3] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[4] Parity-time symmetric acoustic system constructed by piezoelectric composite plates with active external circuits
Yang Zhou(周扬), Zhang-Zhao Yang(杨彰昭), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔). Chin. Phys. B, 2022, 31(6): 064304.
[5] Impact of symmetric gate-recess length on the DC and RF characteristics of InP HEMTs
Ruize Feng(封瑞泽), Bo Wang(王博), Shurui Cao(曹书睿), Tong Liu(刘桐), Yongbo Su(苏永波), Wuchang Ding(丁武昌), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018505.
[6] An easily-prepared impedance matched Josephson parametric amplifier
Ya-Peng Lu(卢亚鹏), Quan Zuo(左权), Jia-Zheng Pan(潘佳政), Jun-Liang Jiang(江俊良), Xing-Yu Wei(魏兴雨), Zi-Shuo Li(李子硕), Wen-Qu Xu(许问渠), Kai-Xuan Zhang(张凯旋), Ting-Ting Guo(郭婷婷), Shuo Wang(王硕), Chun-Hai Cao(曹春海), Wei-Wei Xu(许伟伟), Guo-Zhu Sun(孙国柱), and Pei-Heng Wu(吴培亨). Chin. Phys. B, 2021, 30(6): 068504.
[7] Characteristic mode analysis of wideband high-gain and low-profile metasurface antenna
Kun Gao(高坤), Xiang-Yu Cao(曹祥玉), Jun Gao(高军), Huan-Huan Yang(杨欢欢), and Jiang-Feng Han(韩江枫). Chin. Phys. B, 2021, 30(6): 064101.
[8] Graphene-tuned threshold gain to achieve optical pulling force on microparticle
Hong-Li Chen(陈鸿莉) and Yang Huang(黄杨). Chin. Phys. B, 2021, 30(6): 064205.
[9] Brillouin gain spectrum characterization in Ge-doped large-mode-area fibers
Xia-Xia Niu(牛夏夏), Yi-Feng Yang(杨依枫), Zhao Quan(全昭), Chun-Lei Yu(于春雷), Qin-Ling Zhou(周秦岭), Hui Shen(沈辉), Bing He(何兵), and Jun Zhou(周军). Chin. Phys. B, 2021, 30(12): 124203.
[10] Suppression of persistent photoconductivity in high gain Ga2O3 Schottky photodetectors
Haitao Zhou(周海涛), Lujia Cong(丛璐佳), Jiangang Ma(马剑钢), Bingsheng Li(李炳生), Haiyang Xu(徐海洋), and Yichun Liu(刘益春). Chin. Phys. B, 2021, 30(12): 126104.
[11] Gain-induced large optical torque in optical twist settings
Genyan Li(李艮艳), Xiao Li(李肖), Lei Zhang(张磊), Jun Chen(陈君). Chin. Phys. B, 2020, 29(8): 084201.
[12] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[13] High-dimensional atomic microscopy in surface plasmon polaritons
Akhtar Munir, Abdul Wahab, and Munsif Jan. Chin. Phys. B, 2020, 29(12): 124204.
[14] Soliton evolution and control in a two-mode fiber with two-photon absorption
Qianying Li(李倩颖). Chin. Phys. B, 2020, 29(1): 014204.
[15] High-gain and low-distortion Brillouin amplification based on pump multi-frequency intensity modulation
Li-Wen Sheng(盛立文), De-Xin Ba(巴德欣), Zhi-Wei Lv(吕志伟). Chin. Phys. B, 2019, 28(2): 024212.
No Suggested Reading articles found!