Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 047504    DOI: 10.1088/1674-1056/22/4/047504
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic structures and magnetic couplings of B-, C-, and N-doped BeO

Pang Hua (庞华), Zhang Sha (张莎), Li Fa-Shen (李发伸)
Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
Abstract  The electronic structures and magnetic properties of B-, C-, and N-doped BeO supercells are investigated by means of ab initio calculations using density functional theory. The magnetic exchange constants of C-doped BeO at different doping levels are also calculated. A phenomenological band structure model based on p-d exchange-like p-p level repulsion between the dopants is raised forward to explain the magnetic ground states in B-, C-, and N-doped BeO systems. The evolution from antiferromagnetic phase to ferromagnetic phase of C-doped BeO supercell with C concentration decreasing can also be well explained using this model. The findings in this study provide a simple guide for the design of band structure for magnetic sp-electron semiconductor.
Keywords:  electronic structure      magnetic coupling      first-principles  
Received:  05 June 2012      Revised:  07 September 2012      Accepted manuscript online: 
PACS:  75.30.Hx (Magnetic impurity interactions)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10975066).
Corresponding Authors:  Pang Hua     E-mail:  hpang@lzu.edu.cn

Cite this article: 

Pang Hua (庞华), Zhang Sha (张莎), Li Fa-Shen (李发伸) Electronic structures and magnetic couplings of B-, C-, and N-doped BeO 2013 Chin. Phys. B 22 047504

[1] Li F, Zhu Z H, Yao X D, Lu G Q, Zhao M W, Xia Y Y and Chen Y 2008 Appl. Phys. Lett. 92 102515
[2] Ma Y, Foster A S, Krasheninnikov A V and Nieminen R M 2005 Phys. Rev. B 72 205416
[3] Faccio R, Pardo H, Denis P A, Yoshikawa Oeiras R, Araújo-Moreira F M, Veríssimo-Alves M and Mombrú A W 2008 Phys. Rev. B 77 035416
[4] Si M S and Xue D S 2007 Phys. Rev. B 75 193409
[5] Singh R and Kroll P 2009 J. Phys.: Condens. Matter 21 196002
[6] Hou D L, Ye X J, Meng H J, Zhou H J, Li X L, Zhen C M and Tang G D 2007 Appl. Phys. Lett. 90 142502
[7] Pan H, Yi J B, Shen L, Wu R Q, Yang J H, Lin J Y, Feng Y P, Ding J, Van L H and Yin J H 2007 Phys. Rev. Lett. 99 127201
[8] Lee J H, Choi I H, Shin S, Lee S, Lee J, Whang C, Lee S C, Lee K R, Baek J H, Chae K H and Song J H 2007 Appl. Phys. Lett. 90 032504
[9] Duhalde S, Vignolo M F, Chiliotte C, Rodríguez Torres C E, Errico L A, Cabrera A F, Rentería M, Sánchez F H and Weissmann M 2005 Phys. Rev. B 72 161313
[10] Xu X G, Yang H L, Wu Y, Zhang D L and Jiang Y 2012 Chin. Phys. B 21 047504
[11] Wen Z, Wu D, Gao J L, Tang S L, Xu Q Y, Qiu T and Xu M X 2011 Chin. Phys. B 20 087505
[12] Ma Y D, Dai Y and Huang B B 2011 Comput. Mater. Sci. 50 1661
[13] Zhang C W, Wang P J and Li P 2011 Solid State Sci. 13 480
[14] Pan H, Feng Y P, Wu Q Y, Huang Z G and Lin J Y 2008 Phys. Rev. B 77 125211
[15] Yang K S, Wu R Q, Shen L, Feng Y P, Dai Y and Huang B B 2010 Phys. Rev. B 81 125211
[16] Sudakar C, Thakur J S, Lawes G, Naik R and Naik V M 2007 Phys. Rev. B 75 054423
[17] Tiwari A, Snure M, Kumar D and Abiade J T 2008 Appl. Phys. Lett. 92 062509
[18] Herng T S, Lau S P, Yu S F, Yang H Y, Ji X H, Chen J S, Yasui N and Inaba H 2006 J. Appl. Phys. 99 086101
[19] Nguyen H H, Virginie B and Joe S 2005 Appl. Phys. Lett. 86 082505
[20] Blaha P, Schwarz K, Sorantin P and Trickey S B 1990 Comput. Phys. Commun. 59 399
[21] Roessler D M, Walker W C and Loh E 1969 J. Phys. Chem. Solids 30 157
[22] Griindler R, Breuer K and Tews W 1978 Phys. Status Solidi B 86 329
[23] Hazen R M and Finger L W 1986 J. Appl. Phys. 59 3728
[24] Baumeier B, Krüger P and Pollmann J 2007 Phys. Rev. B 75 045323
[25] Shein I R, Ryzhkov M V, Gorbunova M A, Makurin Y N and Ivanovskii A L 2007 JETP Lett. 85 246
[26] Gorbunova M A, Shein I R, Makurin Y N, Ivanovskaya V V, Kijko V S and Ivanovskii A L 2008 Physica E 41 164
[27] Shein I R, Gorbunova M A, Kiiko V S and Ivanovskii A L 2010 Rev. Adv. Mater. Sci. 26 48
[28] Shein I R, Gorbuniva M A, Makurin Y N, Kiiko V S and Ivanovskii A L 2008 Int. J. Mod. Phys. B 22 4987
[29] Dalpian G M, Wei S H, Gong X G, Antonio J R, da Silva and Fazzio A 2006 Solid State Commun. 138 353
[30] Walsh A, Juarez L F, da Silva and Wei S H 2008 Phys. Rev. Lett. 100 256401
[31] Saúl A and Radtke G 2011 Phys. Rev. Lett. 106 177203
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[3] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[6] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[7] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[8] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[9] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[10] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[11] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[12] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[13] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[14] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[15] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
No Suggested Reading articles found!