Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 044601    DOI: 10.1088/1674-1056/22/4/044601
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

The influence of defects on the effective Young’s modulus of a defective solid

Shen Wei (沈伟)a, Fan Qun-Bo (范群波)b, Wang Fu-Chi (王富耻)b, Ma Zhuang (马壮)b
a Central Iron and Steel Research Institute,Beijing 100081, China;
b School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Abstract  It is difficult to establish structure-property relationships in defective solid because of its inhomogeneous-geometry microstructure caused by defects. In the present research, the effects of pores and cracks on Young's modulus of defective solid are studied. Based on the law of the conservation of energy, mathematical formulations are proposed to indicate how the shape, size, and distribution of defects affect the effective Young's modulus. In this approach, detailed equations are illustrated to represent the shape and size of defects on the effective Young's modulus. Different from the results obtained from the traditional empirical analyses, mixture law or statistical method, for the first time, our results from the finite element method (FEM) and strict analytical calculation show that the influence of pore radius and crack length on the effective Young's modulus can be quantified. It is found that the longest crack in a typical microstructure of ceramic coating dominates the contribution of the effective Young's modulus in vertical direction of the crack.
Keywords:  defects      effective Young's modulus      conservation of energy      pore radius and crack length  
Received:  06 July 2012      Revised:  27 August 2012      Accepted manuscript online: 
PACS:  46.05.+b (General theory of continuum mechanics of solids)  
  62.20.de (Elastic moduli)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 50801005).
Corresponding Authors:  Shen Wei     E-mail:  wells.shen@gmail.com

Cite this article: 

Shen Wei (沈伟), Fan Qun-Bo (范群波), Wang Fu-Chi (王富耻), Ma Zhuang (马壮) The influence of defects on the effective Young’s modulus of a defective solid 2013 Chin. Phys. B 22 044601

[1] Carvalho F C and Labuz J F 1996 Int. J. Solids Struct. 33 4119
[2] Sun Y, Eripret C and Rousselier G 1995 Eng. Fract. Mech. 5 337
[3] Podrezov Y N, Lugovoi N L and Slyunyaev V N 1999 Powder Metall. Met. Ceram. 38 198
[4] Ju J W and Chen T M 1994 Acta Mech. 103 123
[5] Ramakrishnan N and Arunachalam V S 1990 J. Mater. Sci. 25 3930
[6] Zhao Y H, Tandom G P, Weng G J, Brunswich N and Jersey N 1989 Acta Mech. 76 105
[7] Lau K T, Chipara M, Ling H Y, Ling H Y and Hui D 2004 Compos. B: Eng. 35 95
[8] Fan T Y, Xie L Y, Fan L and Wang Q Z 2011 Chin. Phys. B 20 076102
[9] Liu Z H and Shang J X 2012 Chin. Phys. B 21 016202
[10] Liu S S, Wen Y H and Zhu Z Z 2008 Chin. Phys. B 17 2621
[11] Feng X Q and Yu S W 2000 Theor. Appl. Fract. Mech. 34 225
[12] Michlik P and Berndt C 2006 Surf. Coat. Technol. 201 2369
[13] Wang Z, Kulkarni A, Deshpande S, Nakamura T and Herman H 2003 Acta Mater. 51 5319
[14] Jadhav A D, Padture N P, Jordan E H, Gell M, Miranzo P and Fuller J E 2006 Acta Mater. 54 3343
[15] Langer S A, Carter W C and Fuller E R 1997 "Object Oriented Finite Element Analysis for Materials Science", Center for Theoretical and Computational Materials Science and the Information Laboratory at the NIST, 1997, URL: www.ctcms.nist.gov/oof/(10/2004)
[16] Shen W, Fan Q B, Wang F C and Ma Z 2012 Appl. Math. Model. 36 1995
[17] Shen W, Fang Q B, Wang F C and Ma Z 2009 Comput. Mater. Sci. 46 600
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[3] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[4] Direct visualization of structural defects in 2D semiconductors
Yutuo Guo(郭玉拓), Qinqin Wang(王琴琴), Xiaomei Li(李晓梅), Zheng Wei(魏争), Lu Li(李璐), Yalin Peng(彭雅琳), Wei Yang(杨威), Rong Yang(杨蓉), Dongxia Shi(时东霞), Xuedong Bai(白雪冬), Luojun Du(杜罗军), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(7): 076105.
[5] Effect of heavy ion irradiation on the interface traps of AlGaN/GaN high electron mobility transistors
Zheng-Zhao Lin(林正兆), Ling Lü(吕玲), Xue-Feng Zheng(郑雪峰), Yan-Rong Cao(曹艳荣), Pei-Pei Hu(胡培培), Xin Fang(房鑫), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2022, 31(3): 036103.
[6] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[7] Radiation effects of 50-MeV protons on PNP bipolar junction transistors
Yuan-Ting Huang(黄垣婷), Xiu-Hai Cui(崔秀海), Jian-Qun Yang(杨剑群), Tao Ying(应涛), Xue-Qiang Yu(余雪强), Lei Dong(董磊), Wei-Qi Li(李伟奇), and Xing-Ji Li(李兴冀). Chin. Phys. B, 2022, 31(2): 028502.
[8] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[9] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[10] Effect of the codoping of N—H—O on the growth characteristics and defects of diamonds under high temperature and high pressure
Zhenghao Cai(蔡正浩), Bowei Li(李博维), Liangchao Chen(陈良超), Zhiwen Wang(王志文), Shuai Fang(房帅), Yongkui Wang(王永奎), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(10): 108104.
[11] Passivation and dissociation of Pb-type defects at a-SiO2/Si interface
Xue-Hua Liu(刘雪华), Wei-Feng Xie(谢伟锋), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2021, 30(9): 097101.
[12] Microstructure evolution of T91 steel after heavy ion irradiation at 550 ℃
Ligang Song(宋力刚), Bo Huang(黄波), Jianghua Li(李江华), Xianfeng Ma(马显锋), Yang Li(李阳), Zehua Fang(方泽华), Min Liu(刘敏), Jishen Jiang(蒋季伸), and Yanying Hu(胡琰莹). Chin. Phys. B, 2021, 30(8): 086103.
[13] Influence of helium on the evolution of irradiation-induced defects in tungsten: An object kinetic Monte Carlo simulation
Peng-Wei Hou(侯鹏伟), Yu-Hao Li(李宇浩), Zhong-Zhu Li(李中柱), Li-Fang Wang(王丽芳), Xingyu Gao(高兴誉), Hong-Bo Zhou(周洪波), Haifeng Song(宋海峰), and Guang-Hong Lu(吕广宏). Chin. Phys. B, 2021, 30(8): 086108.
[14] Achieving high-performance multilayer MoSe2 photodetectors by defect engineering
Jintao Hong(洪锦涛), Fengyuan Zhang(张丰源), Zheng Liu(刘峥), Jie Jiang(蒋杰), Zhangting Wu(吴章婷), Peng Zheng(郑鹏), Hui Zheng(郑辉), Liang Zheng(郑梁), Dexuan Huo(霍德璇), Zhenhua Ni(倪振华), and Yang Zhang(张阳). Chin. Phys. B, 2021, 30(8): 087801.
[15] Effect of the potential function and strain rate on mechanical behavior of the single crystal Ni-based alloys: A molecular dynamics study
Qian Yin(尹倩), Ye-Da Lian(连业达), Rong-Hai Wu(巫荣海), Li-Qiang Gao(高利强), Shu-Qun Chen(陈树群), and Zhi-Xun Wen(温志勋). Chin. Phys. B, 2021, 30(8): 080204.
No Suggested Reading articles found!