Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(2): 027801    DOI: 10.1088/1674-1056/22/2/027801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Hydrothermal synthesis of hexagonal-phase NaYF4: Er, Yb with different shapes for application as photovoltaic up-converters

Wang Dong-Feng (王东丰)a, Zhang Xiao-Dan (张晓丹)a c, Liu Yong-Juan (刘永娟)b, Wu Chun-Ya (吴春亚)a, Zhang Cun-Shan (张存善)b, Wei Chang-Chun (魏长春)a, Zhao Ying (赵颖)a
a Institute of Photo-electronics Thin Film Devices and Technique of Nankai University, Key Laboratory of Photo-electronics Thin Film Devices and Technique of Tianjin, Key Laboratory of Photo-electronic Information Science and Technology (Nankai University), Ministry of Education, Tianjin 300071, China;
b School of Information Engineering. Hebei University of Technology, Tianjin 300071, China;
c State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
Abstract  Hexagonal β-NaYF4 co-doped with Yb3+ and Er3+ is directly synthesized under mild conditions using a hydrothermal method. The variation of the ratio of Ln3+ to F- and ethylenediaminetetraacetic acid (EDTA) causes the shape of the microcrystal to change from microplate to microcolumn. The NaYF4 powder is mixed with polydimethylsiloxane (PDMS) to create an up-converter for thin film amorphous silicon solar cells so as to evaluate the effectiveness of the synthesized material as up-converter. In order to overcome the difficulty in measuring the effectiveness of up-conversion material, a new method of using near infrared illumination to measure the short circuit current densities of solar cells both with and without up-converters is developed. Up-converter with pure hexagonal NaYF4:Yb3+/Er3+microcrystal produces a high current output. Emission intensity data obtained by photoluminescence suggest that pure hexagonal NaYF4:Yb3+/Er3+ microcrystals are more efficient than nanocrystals when used as up-converting phosphors.
Keywords:  up-convesion      NaYF4      hydrothermal method      up-convertor      solar cells  
Received:  14 May 2012      Revised:  12 June 2012      Accepted manuscript online: 
PACS:  78.20.-e (Optical properties of bulk materials and thin films)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  78.55.-m (Photoluminescence, properties and materials)  
  42.70.Nq (Other nonlinear optical materials; photorefractive and semiconductor materials)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2011CBA00705, 2011CBA00706, and 2011CBA00707); the National Natural Science Foundation of China (Grant No. 60976051); the Science and Technology Support Program of Tianjin, China (Grant No. 12ZCZDGX03600); and the Program for New Century Excellent Talents in University of China (Grant No. NCET-08-0295).
Corresponding Authors:  Zhang Xiao-Dan     E-mail:  xdzhang@nankai.edu.cn

Cite this article: 

Wang Dong-Feng (王东丰), Zhang Xiao-Dan (张晓丹), Liu Yong-Juan (刘永娟), Wu Chun-Ya (吴春亚), Zhang Cun-Shan (张存善), Wei Chang-Chun (魏长春), Zhao Ying (赵颖) Hydrothermal synthesis of hexagonal-phase NaYF4: Er, Yb with different shapes for application as photovoltaic up-converters 2013 Chin. Phys. B 22 027801

[1] Liu En-Ke 1980 Photovoltaic Cell Devices and Its Application (Beijing: Science Press)
[2] Trupke T, Shalav A, Richards B S, Würfel P and Green M A 2006 Sol. Energy Mater. Sol. Cells 90 3327
[3] Tropper A C, Carter J N, Lauder R D T, Hanna D C, Davey S T and Szebesta D 1994 J. Opt. Soc. Am. B 11 886
[4] Trupke T, Green M A and Würfel P 2002 J. Appl. Phys. 92 4117
[5] Gibart P, Auzel F, Guillaume J C and Zahraman K 1995 13th EPVSEC, Nice, France, p. 85
[6] Shalav A, Richards B, Trupke T, Corkish R, Krāmer K, Gūdel H and Green M 2003 Third Conference on Photovoltaic Energy Conversion, Osaka, Japan, p. 248
[7] Liu M, Lu Y L, Xie Z B and Chow G M 2011 Sol. Energy Mater. Sol. Cells 95 800
[8] de Wild J, Rath J K, Meijerink A, van Sark W G J H M and Schropp R E I 2010 Sol. Energy Mater. Sol. Cells 94 2395
[9] Shalav A, Richards B, Trupke T, Krāmer K W and Güdel H U 2005 Appl. Phys. Lett. 86 013505
[10] Chai R T, Lian H Z, Hou Z Y, Zhang C M, Peng C and Lin J 2010 J. Phys. Chem. C 114 610
[11] Auzel F 2004 Chem. Rev. (Washington, D. C). 104 139
[12] Menyuk N, Dwight K and Pierce J W 1972 Appl. Phys. Lett. 21 159
[13] Kano T, Yamamoto H and Otomo Y 1972 J. Electrochem. Soc. 119 1561
[14] Bril A, Sommerdijk J L and De Jager A W 1975 J. Electrochem. Soc. 122 660
[15] Sommerdijk J L 1973 J. Lumin. 6 61
[16] Li Z Q and Zhang Y 2006 Angew. Chem. Int. Ed. 45 7732
[17] Yi G S and Chow G M 2006 Adv. Funct. Mater. 16 2324
[18] Liu G K, Zhuang H Z and Chen X Y 2002 Nano Lett. 2 535
[19] Chen X Y, Zhuang H Z, Liu G K, Li S and Nidbala R S 2003 J. Appl. Phys. 94 5559
[20] Liu G K, Chen X Y, Zhuang H Z, Li S and Niedbala R S 2003 J. Solid State Chem. 171 123
[21] Lamer Victor K and Robert H D 1950 J. Am. Chem. Soc. 72 4847
[22] Jin X, Zhang X D, Lei Z F, Xiong S Z, Song F and Zhao Y 2008 Acta Phys. Sin. 57 4580 (in Chinese)
[23] Suyver J F, Grimm J, Krāmer K and Güdel H U 2005 J. Lumin. 114 53
[24] Wang F, Chatterjee D K, Li Z Q, Zhang Y, Fan X P and Wang M Q 2006 Nanotechnology 17 5786
[25] Mai H X, Zhang Y W, Si R, Yan Z G, Sun J D, You L P and Yan C H 2006 J. Am. Chem. Soc. 128 6426
[26] Zhang X D, Jin X, Wang D F, Xiong S Z, Geng X H and Zhao Y 2010 Phys. Status Solidi C 7 1128
[27] Yi G S, Lu H C, Zhao S Y, Yue G, Yang W J, Chen D P and Guo L H 2004 Nano Lett. 4 2191
[28] Liang X, Wang X, Zhuang J, Peng Q and Li Y D 2007 Adv. Funct. Mater. 17 2757
[29] Shan J N, Uddi M, Wei R, Yao N and Ju Y G 2010 J. Phys. Chem. C 114 2452
[30] Auzel F and Pecile D 1973 J. Lumin. 8 32
[31] Krāmer K W, Biner D, Frei G, Güdel H U, Hehlen M P and Lüthi S R 2004 Chem. Mater. 16 1244
[32] Heer S, Lehmann O, Hasse M and Gudel H U 2003 Angew. Chem. Int. Ed. 42 3179
[33] Yan R X, Sun X M, Wang X, Peng Q and Yi Y D 2005 Chem. Eur. J. 11 2183
[34] Yu S H, Liu B, Mo S M, Huang J H, Liu X M and Qian Y T 2003 Adv. Funct. Mater. 13 639
[1] Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management
Min Yue(岳敏), Yan Wang(王燕), Hui-Li Liang(梁会力), and Zeng-Xia Mei (梅增霞). Chin. Phys. B, 2022, 31(8): 088801.
[2] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[3] Surface modulation of halide perovskite films for efficient and stable solar cells
Qinxuan Dai(戴沁煊), Chao Luo(骆超), Xianjin Wang(王显进), Feng Gao(高峰), Xiaole Jiang(姜晓乐), and Qing Zhao(赵清). Chin. Phys. B, 2022, 31(3): 037303.
[4] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[5] Reveal the large open-circuit voltage deficit of all-inorganicCsPbIBr2 perovskite solar cells
Ying Hu(胡颖), Jiaping Wang(王家平), Peng Zhao(赵鹏), Zhenhua Lin(林珍华), Siyu Zhang(张思玉), Jie Su(苏杰), Miao Zhang(张苗), Jincheng Zhang(张进成), Jingjing Chang(常晶晶), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(3): 038804.
[6] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[7] Effect of net carriers at the interconnection layer in tandem organic solar cells
Li-Jia Chen(陈丽佳), Guo-Xi Niu(牛国玺), Lian-Bin Niu(牛连斌), and Qun-Liang Song(宋群梁). Chin. Phys. B, 2022, 31(3): 038802.
[8] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[9] A silazane additive for CsPbI2Br perovskite solar cells
Ruiqi Cao(曹瑞琪), Yaochang Yue(乐耀昌), Hong Zhang(张弘), Qian Cheng(程倩), Boxin Wang(王博欣), Shilin Li(李世麟), Yuan Zhang(张渊), Shuhong Li(李书宏), and Huiqiong Zhou(周惠琼). Chin. Phys. B, 2022, 31(11): 110101.
[10] Could two-dimensional perovskites fundamentally solve the instability of perovskite photovoltaics
Luoran Chen(陈烙然), Hu Wang(王虎), and Yuchuan Shao(邵宇川). Chin. Phys. B, 2022, 31(11): 117803.
[11] Sputtered SnO2 as an interlayer for efficient semitransparent perovskite solar cells
Zheng Fang(方正), Liu Yang(杨柳), Yongbin Jin(靳永斌), Kaikai Liu(刘凯凯), Huiping Feng(酆辉平), Bingru Deng(邓冰如), Lingfang Zheng(郑玲芳), Changcai Cui(崔长彩), Chengbo Tian(田成波), Liqiang Xie(谢立强), Xipeng Xu(徐西鹏), and Zhanhua Wei(魏展画). Chin. Phys. B, 2022, 31(11): 118801.
[12] Recent advances of interface engineering in inverted perovskite solar cells
Shiqi Yu(余诗琪), Zhuang Xiong(熊壮), Zhenhan Wang(王振涵), Haitao Zhou(周海涛), Fei Ma(马飞), Zihan Qu(瞿子涵), Yang Zhao(赵洋), Xinbo Chu(楚新波), and Jingbi You(游经碧). Chin. Phys. B, 2022, 31(10): 107307.
[13] Device simulation of quasi-two-dimensional perovskite/silicon tandem solar cells towards 30%-efficiency
Xiao-Ping Xie(谢小平), Qian-Yu Bai(白倩玉), Gang Liu(刘刚), Peng Dong(董鹏), Da-Wei Liu(刘大伟), Yu-Feng Ni(倪玉凤), Chen-Bo Liu(刘晨波), He Xi(习鹤), Wei-Dong Zhu(朱卫东), Da-Zheng Chen(陈大正), and Chun-Fu Zhang(张春福). Chin. Phys. B, 2022, 31(10): 108801.
[14] Adsorption of CO2 on MgAl layered double hydroxides: Effect of intercalated anion and alkaline etching time
Yan-Yan Feng(冯艳艳), Xiao-Di Niu(牛潇迪), Yong-Hui Xu (徐永辉), and Wen Yang(杨文). Chin. Phys. B, 2021, 30(4): 048101.
[15] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
No Suggested Reading articles found!