Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(2): 027101    DOI: 10.1088/1674-1056/22/2/027101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Multiscale simulations in face-centered cubic metals: A method coupling quantum mechanics and molecular mechanics

Yu Xiao-Xiang (于潇翔)a b, Wang Chong-Yu (王崇愚)b
a Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China;
b Department of Physics, Tsinghua University, Beijing 100084, China
Abstract  An effective multiscale simulation which concurrently couples the quantum-mechanical and molecular-mechanical calculations based on the position continuity of atoms is presented. By an iterative procedure, the structure of the dislocation core in face-centered cubic metal is obtained by first-principles calculation and the long range stress is released by molecular dynamics relaxation. Compared to earlier multiscale methods, the present work couples the long-range strain to the local displacements of the dislocation core in a simpler way with the same accuracy.
Keywords:  first-principles calculation      molecular dynamics      dislocation structure  
Received:  01 September 2012      Revised:  25 September 2012      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.15.Pd (Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)  
  61.72.Lk (Linear defects: dislocations, disclinations)  
Fund: Project supported by the National Basic Research Program of the Ministry of Science and Technology of China (Grant No. 2011CB606402) and the National Natural Science Foundation of China (Grant No. 51071091).
Corresponding Authors:  Yu Xiao-Xiang     E-mail:  yuxx07@gmail.com

Cite this article: 

Yu Xiao-Xiang (于潇翔), Wang Chong-Yu (王崇愚) Multiscale simulations in face-centered cubic metals: A method coupling quantum mechanics and molecular mechanics 2013 Chin. Phys. B 22 027101

[1] Schoeck G, Kohlhammer S and Fahnle M 1999 Phil. Mag. Lett. 79 849
[2] Schoeck G 2001 Philos. Mag. A 81 1161
[3] Lu G, Kioussis N, Bulatov V V and Kaxiras E 2000 Phys. Rev. B 62 3099
[4] Lu G, Kioussis N, Bulatov V V and Kaxiras E 2001 Mater. Sci. Eng. A 309 142
[5] Mryasov O N, Gornostyrev Y N, van Schilfgaarde M and Freeman A J 2002 Acta Mater. 50 4545
[6] Szelestey P, Patriarca M and Kaski K 2003 Modelling Simul. Mater. Sci. Eng. 11 883
[7] Yan J A, Wang C Y and Wang S Y 2004 Phys. Rev. B 70 174105
[8] Wang C and Wang C Y 2009 Chin. Phys. B 18 3928
[9] Vitek V 1968 Philos. Mag. 18 773
[10] Vitek V 1974 Cryst. Lattice Defects 5 1
[11] Choly N, Lu G, E W and Kaxiras E 2005 Phys. Rev. B 71 094101
[12] Lu G, Tadmor E B and Kaxiras E 2006 Phys. Rev. B 73 024108
[13] Liu Y, Lu G, Chen Z Z and Kioussis N 2007 Modelling Simul. Mater. Sci. Eng. 15 275
[14] Zhang X and Lu G 2010 Phys. Rev. B 82 012101
[15] Zhang X, Peng Q and Lu G 2010 Phys. Rev. B 82 134120
[16] Woodward C and Rao S 2002 Phys. Rev. Lett. 88 216402
[17] Woodward C and Rao S 2004 Philos. Mag. 84 401
[18] Cawkwell M J, Nguyen-Manh D, Woodward C, Pettifor D G and Vitek V 2005 Science 309 1059
[19] Woodward C, Trinkle D R, Hector L G Jr and Olmsted D L 2008 Phys. Rev. Lett. 100 045507
[20] Leyson G P M, Curtin W A, Hector L G Jr and Woodward C 2010 Nat. Mater. 9 750
[21] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[22] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[23] Blochl P E 1994 Phys. Rev. B 50 17953
[24] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[25] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[26] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[27] Mishin Y, Farkas D, Mehl M J and Papaconstantopoulos D A 1999 Phys. Rev. B 59 3393
[28] Honeycutt J D and Andersen H C 1987 J. Phys. Chem. 91 4950
[29] Stukowski A 2010 Modelling Simul. Mater. Sci. Eng. 18 015012
[30] Höllerbauer W and Karnthaler H P 1981 Beitr. Elektronenmikroskop. Direktabb. Oberfl. 14 361
[31] Carter C B and Holmes S M 1977 Philos. Mag. 35 1161
[32] Wen M, Fukuyama S and Yokogawa K 2005 Scripta Mater. 52 959
[33] Wen M, Ngan A H W, Fukuyama S and Yokogawa K 2005 Philos. Mag. 85 1917
[34] Qi Y, Strachan A, Cagin T and Goddard III W A 2001 Mater. Sci. Eng. A 309-310 156
[35] Yu X X and Wang C Y 2009 Acta Mater. 57 5914
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[4] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[5] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[6] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[9] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[10] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[11] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[12] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[13] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[14] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[15] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
No Suggested Reading articles found!