Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(2): 028501    DOI: 10.1088/1674-1056/22/2/028501
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Discussion of the metric in characterizing single-event effect induced by heavy ions

Zhang Ke-Ying (张科营), Zhang Feng-Qi (张凤祁), Luo Yin-Hong (罗尹虹), Guo Hong-Xia (郭红霞 )
Northwest Institute of Nuclear Technology, Xi'an 710024, China
Abstract  Single-event effect (SEE) is the most serious problem in space environment. The modern semiconductor technology worries about the feasibility of the linear energy transfer (LET) as metric in characterizing SEE induced by heavy ions. In the paper, we calibrate the detailed static random access memory (SRAM) cell structure model of advanced field programmable gate array (FPGA) device using the computer-aided design tool, and calculate the heavy ion energy loss in multi-layer metal utilizing Geant4. Based on the heavy ion accelerator experiment and numerical simulation, it is proved that the metric of LET at the device surface, with ignoring the top metal material in advanced semiconductor device, would underestimate the SEE. In the SEE evaluation in space radiation environment the top-layers on the semiconductor device must be taken into consideration.
Keywords:  cross-section curve      metric      linear energy transfer      field programmable gate array  
Received:  13 February 2012      Revised:  20 June 2012      Accepted manuscript online: 
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  61.82.Fk (Semiconductors)  

Cite this article: 

Zhang Ke-Ying (张科营), Zhang Feng-Qi (张凤祁), Luo Yin-Hong (罗尹虹), Guo Hong-Xia (郭红霞 ) Discussion of the metric in characterizing single-event effect induced by heavy ions 2013 Chin. Phys. B 22 028501

[1] Reed R A and Weller R A 2007 IEEE Trans. Nucl. Sci. 54 2312
[2] Black J D, Ball D R, Robinson W H, Fleetwood D M, Schrimpf R D, Reed R A, Black D A, Warren K M, Tipton A D, Dodd P E, Haddad N F, Xapsos M A, Kim H S and Friendlich M 2008 IEEE Trans. Nucl. Sci. 55 2943
[3] Petersen E L 1997 IEEE Trans. Nucl. Sci. 44 2174
[4] Dodd P E 2007 IEEE Trans. Nucl. Sci. 54 889
[5] Warren K and Massengill L 1999 IEEE Trans. Nucl. Sci. 46 1363
[6] Xapsos M A 2004 IEEE Tran. Nucl. Sci. 51 3250
[7] Dodds N A and Reed R A 2009 IEEE Trans. Nucl. Sci. 56 3172
[8] Swift G M 2004 Xilinx Single Event Effects 1st Consortium Report Virtex-II Static SEU Characterization pp. 1-105
[9] Sexton F W 1989 IEEE Trans. Nucl. Sci. 36 2318
[10] Cornelius I M 2003 IEEE Trans. Nucl. Sci. 50 2373
[11] Hansen D L 2007 IEEE Trans. Nucl. Sci. 50 2525
[12] Dodd P E 2007 IEEE Trans. Nucl. Sci. 54 2303
[13] Giot D 2008 IEEE Trans. Nucl. Sci. 55 2048
[14] McNulty P J 1996 IEEE Trans. Nucl. Sci. 42 475
[15] McNulty P J 1999 IEEE Trans. Nucl. Sci. 46 1370
[16] Qin J R, Chen S M, Li D W, Liang B and Liu B W 2012 Chin. Phys. B 21 029401
[17] Zhang K Y, Guo H X, Luo Y H, Fan R Y, Guo X Q, Chen W, Lin D S, Zhang F Q, Yan Y H and Guo G 2011 Chin. Phys. B 21 068501
[18] Petersen E 1996 IEEE Trans. Nucl. Sci. 43 952
[1] Spin pumping by higher-order dipole-exchange spin-wave modes
Peng Wang(王鹏). Chin. Phys. B, 2023, 32(3): 037601.
[2] Tolerance-enhanced SU(1,1) interferometers using asymmetric gain
Jian-Dong Zhang(张建东) and Shuai Wang(王帅). Chin. Phys. B, 2023, 32(1): 010306.
[3] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[4] Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Chin. Phys. B, 2022, 31(8): 080502.
[5] A 45-μJ, 10-kHz, burst-mode picosecond optical parametric oscillator synchronously pumped at a second harmonic cavity
Chao Ma(马超), Ke Liu(刘可), Yong Bo(薄勇), Zhi-Min Wang(王志敏), Da-Fu Cui(崔大复), and Qin-Jun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 084206.
[6] Quantum fields presentation and generating functions of symplectic Schur functions and symplectic universal characters
Denghui Li(李登慧), Fei Wang(王菲), and Zhaowen Yan(颜昭雯). Chin. Phys. B, 2022, 31(8): 080202.
[7] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[8] Novel closed-cycle reaction mode for totally green production of Cu1.8Se nanoparticles based on laser-generated Se colloidal solution
Zhangyu Gu(顾张彧), Yisong Fan(范一松), Yixing Ye(叶一星), Yunyu Cai(蔡云雨), Jun Liu(刘俊), Shouliang Wu(吴守良), Pengfei Li(李鹏飞), Junhua Hu(胡俊华), Changhao Liang(梁长浩), and Yao Ma(马垚). Chin. Phys. B, 2022, 31(7): 078102.
[9] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[10] Spin freezing in the van der Waals material Mn2Ga2S5
Jie Shen(沈洁), Xitong Xu(许锡童), Miao He(何苗), Yonglai Liu(刘永来), Yuyan Han(韩玉岩), and Zhe Qu(屈哲). Chin. Phys. B, 2022, 31(6): 067105.
[11] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[12] Erratum to “Boundary layer flow and heat transfer of a Casson fluid past a symmetric porous wedge with surface heat flux”
Swati Mukhopadhyay and Iswar Chandra Mandal. Chin. Phys. B, 2022, 31(5): 059902.
[13] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[14] Impact of gate offset in gate recess on DC and RF performance of InAlAs/InGaAs InP-based HEMTs
Shurui Cao(曹书睿), Ruize Feng(封瑞泽), Bo Wang(王博), Tong Liu(刘桐), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058502.
[15] Pseudospin symmetric solutions of the Dirac equation with the modified Rosen—Morse potential using Nikiforov—Uvarov method and supersymmetric quantum mechanics approach
Wen-Li Chen(陈文利) and I B Okon. Chin. Phys. B, 2022, 31(5): 050302.
No Suggested Reading articles found!