Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(2): 026803    DOI: 10.1088/1674-1056/22/2/026803
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Optically pumped GaN/AlGaN quantum well intersubband terahertz laser

Fu Ai-Bing (傅爱兵), Hao Ming-Rui (郝明瑞), Yang Yao (杨耀), Shen Wen-Zhong (沈文忠), Liu Hui-Chun (刘惠春)
Key Laboratory of Artificial Structures and Quantum Control (Minister of Education), Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract  We propose an optically pumped nonpolar GaN/AlGaN quantum well (QW) active region design for terahertz (THz) lasing in the wavelength range of 30 μm~ 40 μm and operating at room temperature. The fast longitudinal optical (LO) phonon scattering in GaN/AlGaN QWs is used to depopulate the lower laser state, and more importantly, the large LO phonon energy is utilized to reduce the thermal population of the lasing states at high temperatures. The influences of temperature and pump intensity on gain and electron densities are investigated. Based on our simulations, we predict that with a sufficiently high pump intensity, a room temperature operated THz laser using a nonpolar GaN/AlGaN structure is realizable.
Keywords:  quantum well structure      intersubband terahertz laser      GaN  
Received:  02 July 2012      Revised:  22 August 2012      Accepted manuscript online: 
PACS:  68.65.Fg (Quantum wells)  
  42.55.Px (Semiconductor lasers; laser diodes)  
  61.72.uj (III-V and II-VI semiconductors)  
Fund: Project supported in part by the National Major Basic Research Program of China (Grant No. 2011CB925603) and the Shanghai Municipal Major Basic Research Project (Grant No. 09DJ1400102).
Corresponding Authors:  Shen Wen-Zhong, Liu Hui-Chun     E-mail:  wzshen@sjtu.edu.cn; h.c.liu@sjtu.edu.cn

Cite this article: 

Fu Ai-Bing (傅爱兵), Hao Ming-Rui (郝明瑞), Yang Yao (杨耀), Shen Wen-Zhong (沈文忠), Liu Hui-Chun (刘惠春) Optically pumped GaN/AlGaN quantum well intersubband terahertz laser 2013 Chin. Phys. B 22 026803

[1] Williams B S 2007 Nature Photonics 1 517
[2] Kim S M, Hatami F, Harris J S, Kurian A W, Ford J, King D, Scalari G, Giovannini M, Hoyler N, Faist J and Harris G 2006 Appl. Phys. Lett. 88 153903
[3] Barbieri S, Alton J, Baker C, Lo T, Beere H and Ritchie D 2005 Opt. Express 13 6497
[4] Nguyen K L, Johns M L, Gladden L, Worrall C H, Alexander P, Beere H E, Pepper M, Ritchie D A, Alton J, Barbieri S and Linfield E H 2006 Opt. Express 14 2123
[5] Lee A W M, Williams B S, Kumar S, Hu Q and Reno J L 2006 IEEE Photon. Technol. Lett. 18 1415
[6] Kazarinov R and Suris R 1971 Sov. Phys. Semicond. 5 707
[7] Faist J, Capasso F, Sivco D L, Sirtori C, Hutchinson A L and Cho A Y 1994 Science 264 553
[8] Köler R, Tredicucci A, Beltram F, Beere H E, Linfield E H, Davies A G, Ritchie D A, Iotti R C and Rossi F 2002 Nature 417 156
[9] Luo H, Laframboise S R, Wasilewski Z R, Aers G C, Liu H C and Cao J C 2007 Appl. Phys. Lett. 90 041112
[10] Kumar S, Hu Q and Reno J L 2009 Appl. Phys. Lett. 94 131105
[11] Fathololoumi S, Dupont E, Chan C, Wasilewski Z, Laframboise S, Ban D, Mátyás A, Jirauschek C, Hu Q and Liu H 2012 Opt. Express 20 3866
[12] Williams B S, Callebaut H, Kumar S, Hu Q and Reno J L 2003 Appl. Phys. Lett. 82
[13] Jovanovi V, Indjin D, Ikoni Z and Harrison P 2004 Appl. Phys. Lett. 84 2995
[14] Liu H C, Song C Y, Wasilewski Z R, Spring-Thorpe A J, Cao J C, Dharma-Wardana C, Aers G C, Lockwood D J and Gupta J A 2003 Phys. Rev. Lett. 90 77402
[15] Xie G, Xu Edward, Niloufar Hashemi, Zhang B, Fred Y F and Wai T N 2012 Chin. Phys. B 21 086105
[16] Lü Y J, Lin Z J, Yu Y X, Meng L G, Cao Z F, Luan C B and Wang Z G 2012 Chin. Phys. B 21 097104
[17] Sun G, Soref R A and Khurgin J B 2005 Superlattices and Microstructures 37 107
[18] Waltereit P, Brandt O, Trampert A, Grahn H, Menniger J, Ramsteiner M, Reiche M and Ploog K 2000 Nature 406 865
[19] Craven M D, Lim S H, Wu F, Speck J S and DenBaars S P 2002 Appl. Phys. Lett. 81 1201
[20] Haskell B A, Wu F, Matsuda S, Craven M D, Fini P T, DenBaars S P, Speck J S and Nakamura S 2003 Appl. Phys. Lett. 83 1554
[21] Sun G and Khurgin J B 1993 IEEE J. Quantum Electron. 29 1104
[22] Iizuka N, Kaneko K, Suzuki N, Asano T, Noda S and Wada O 2000 Appl. Phys. Lett. 77 648
[23] Heber J, Gmachl C, Ng H and Cho A 2002 Appl. Phys. Lett. 81 1237
[24] Suzuki N and Iizuka N 1998 Jpn. J. Appl. Phys. 37 L369
[25] Jovanović V, Indjin D, Ikonić Z, Milanović V and Radovanović J 2002 Solid State Commun. 121 619
[26] Capasso F, Paiella R, Martini R, Colombelli R, Gmachl C, Myers T L, Taubman M S, Williams R M, Bethea C G, Unterrainer K, Hwang H Y, Sivco D L, Cho A Y, Sergent A M, Liu H C and Whittaker E A 2002 IEEE J. Quantum Electron. 38 511
[27] Barbieri S, Alton J, Beere H E, Fowler J, Linfield E H and Ritchie D A 2004 Appl. Phys. Lett. 85 1674
[28] Kumar S, Williams B S, Kohen S, Hu Q and Reno J L 2004 Appl. Phys. Lett. 84 2494
[29] Williams B S, Kumar S, Callebaut H, Hu Q and Reno J L 2003 Appl. Phys. Lett. 83 5142
[30] Hsu L and Walukiewicz W 1997 Physi. Rev. B 56 1520
[1] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[2] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[3] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[4] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[5] Demonstration and modeling of unipolar-carrier-conduction GaN Schottky-pn junction diode with low turn-on voltage
Lijian Guo(郭力健), Weizong Xu(徐尉宗), Qi Wei(位祺), Xinghua Liu(刘兴华), Tianyi Li(李天义), Dong Zhou(周东), Fangfang Ren(任芳芳), Dunjun Chen(陈敦军), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2023, 32(2): 027302.
[6] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[7] Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets
Zhaoxia Bi(毕朝霞), Anders Gustafsson, and Lars Samuelson. Chin. Phys. B, 2023, 32(1): 018103.
[8] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[9] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[10] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[11] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[12] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[13] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[14] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[15] Effects of electrical stress on the characteristics and defect behaviors in GaN-based near-ultraviolet light emitting diodes
Ying-Zhe Wang(王颖哲), Mao-Sen Wang(王茂森), Ning Hua(化宁), Kai Chen(陈凯), Zhi-Min He(何志敏), Xue-Feng Zheng(郑雪峰), Pei-Xian Li(李培咸), Xiao-Hua Ma(马晓华), Li-Xin Guo(郭立新), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068101.
No Suggested Reading articles found!