Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 018902    DOI: 10.1088/1674-1056/22/1/018902
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A cellular automata traffic flow modeling of desired speed variability

K. Bentaleba, K. Jettoa b, H. Ez-Zahraouya, A. Benyoussefa c d
a Laboratoire de Magnétisme et de Physique des Hautes Energies, associé au CNRST (URAC 12), Département de physique, B.P. 1014, Faculté des sciences, Université Mohammed V Agdal, Rabat, Morocco;
b Ecole Hassania des Travaux Publics Km 7, Route d'El Jadida, BP8108, Oasis Casablanca, Morocco;
c Institute of Nanomaterials and Nanotechnologies, INANOTECH, MACsIR, Rabat, Morocco;
d Hassan II Academy of Science and Technology, Rabat, Morocco
Abstract  The satisfaction rate of desired velocity in the case of mixture of fast and slow vehicles is studied by using cellular automaton method. It is found that at low density the satisfaction rate depends on the maximal velocity. However, the behavior of the satisfaction rate as a function of the coefficient of variance is independent of the maximal velocity. This is in good agreement with empirical results obtained by Lipshtat [Phys. Rev. E 79 066110 (2009)]. Furthermore, our numerical result demonstrates that at low density the satisfaction rate takes its higher values, whereas the coefficient of variance is close to zero. The coefficient of variance increases with increasing density, while the satisfaction rate decreases to zero. Moreover, we have also shown that, at low density the coefficient variance depends strongly on the probability of overtaking.
Keywords:  traffic      celluar automata      satisfaction coefficient      desired speed  
Received:  11 April 2012      Revised:  12 July 2012      Accepted manuscript online: 
PACS:  89.40.Bb (Land transportation)  
  02.70.Ac  
  07.05.Tp (Computer modeling and simulation)  
Corresponding Authors:  H. Ez-Zahraouy     E-mail:  ezahamid@fsr.ac.ma

Cite this article: 

K. Bentaleb, K. Jetto, H. Ez-Zahraouy, A. Benyoussef A cellular automata traffic flow modeling of desired speed variability 2013 Chin. Phys. B 22 018902

[1] Chowdhury D and Nishinari K 2011 Stochastic Transport in Complex Systems from Molecules to Vehicles (Elsevier)
[2] Klar A and Wegener R 2000 Transport Theory and Statistical Physics 29 479
[3] Blue V, Bonetto F and Embrechts M 1996 Transportation Research Board Annual Meeting (Washington, DC)
[4] Nagel K 1996 Phys. Rev. E 3 4655
[5] Schadschneider A and Schreckenberg M 1993 J. Phys. A 26 679
[6] Villar L and de Souza A 1994 Physica A 211 84
[7] Ding J X, Huang H J and Tian Q 2011 Chin. Phys. B 20
[8] Qian Y S, Shi P J, Zeng Q, Ma C X, Lin F, Sun P and Yin X T 2009 Chin. Phys. B 18 4037
[9] Qian Y S, Shi P J, Zeng Q, Ma C X, Lin F, Sun P and Wang H L 2010 Chin. Phys. B 19 048201
[10] Lu W Z, He H D and Dong L Y 2011 Chin. Phys. B 20 040514
[11] Rawat K 2012 International Journal of Vehicular Technology 2012 1
[12] Nagel K and Schreckenberg M 1992 J. Phys. I 2
[13] Ez-Zahraouy H, Jetto K and Benyoussef A 2004 Eur. Phys. J. B 40 111
[14] Ez-Zahraouy H, Jetto K and Benyoussef A 2006 Chin. J. Phys. 44 486
[15] Lipshtat A 2009 Phys. Rev. E 79 066110
[16] Jetto K, Ez-Zahraouy H and Benyoussef A 2010 Int. J. Mod. Phys. C 21 1311
[17] Ben-Naim E and Krapivsky P L 1997 Phys. Rev. E 56 6680
[1] A novel lattice model integrating the cooperative deviation of density and optimal flux under V2X environment
Guang-Han Peng(彭光含), Chun-Li Luo(罗春莉), Hong-Zhuan Zhao(赵红专), and Hui-Li Tan(谭惠丽). Chin. Phys. B, 2023, 32(1): 018902.
[2] Traffic flow of connected and automated vehicles at lane drop on two-lane highway: An optimization-based control algorithm versus a heuristic rules-based algorithm
Huaqing Liu(刘华清), Rui Jiang(姜锐), Junfang Tian(田钧方), and Kaixuan Zhu(朱凯旋). Chin. Phys. B, 2023, 32(1): 014501.
[3] A novel car-following model by sharing cooperative information transmission delayed effect under V2X environment and its additional energy consumption
Guang-Han Peng(彭光含), Te-Ti Jia(贾特提), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2022, 31(5): 058901.
[4] Traffic flow prediction based on BILSTM model and data denoising scheme
Zhong-Yu Li(李中昱), Hong-Xia Ge(葛红霞), and Rong-Jun Cheng(程荣军). Chin. Phys. B, 2022, 31(4): 040502.
[5] Modeling the heterogeneous traffic flow considering the effect of self-stabilizing and autonomous vehicles
Yuan Gong(公元) and Wen-Xing Zhu(朱文兴). Chin. Phys. B, 2022, 31(2): 024502.
[6] Modeling and analysis of car-following behavior considering backward-looking effect
Dongfang Ma(马东方), Yueyi Han(韩月一), Fengzhong Qu(瞿逢重), and Sheng Jin(金盛). Chin. Phys. B, 2021, 30(3): 034501.
[7] Stability analysis of multiple-lattice self-anticipative density integration effect based on lattice hydrodynamic model in V2V environment
Geng Zhang(张埂) and Da-Dong Tian(田大东). Chin. Phys. B, 2021, 30(12): 120201.
[8] CO2 emission control in new CM car-following model with feedback control of the optimal estimation of velocity difference under V2X environment
Guang-Han Peng(彭光含), Rui Tang(汤瑞), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 108901.
[9] A new car-following model with driver's anticipation effect of traffic interruption probability
Guang-Han Peng(彭光含). Chin. Phys. B, 2020, 29(8): 084501.
[10] Major impact of queue-rule choice on the performance of dynamic networks with limited buffer size
Xiang Ling(凌翔), Xiao-Kun Wang(王晓坤), Jun-Jie Chen(陈俊杰), Dong Liu(刘冬), Kong-Jin Zhu(朱孔金), Ning Guo(郭宁). Chin. Phys. B, 2020, 29(1): 018901.
[11] A new cellular automaton model accounting for stochasticity in traffic flow induced by heterogeneity in driving behavior
Xiaoyong Ni(倪晓勇), Hong Huang(黄弘). Chin. Phys. B, 2019, 28(9): 098901.
[12] A macroscopic traffic model based on weather conditions
Zawar H. Khan, Syed Abid Ali Shah, T. Aaron Gulliver. Chin. Phys. B, 2018, 27(7): 070202.
[13] A new control method based on the lattice hydrodynamic model considering the double flux difference
Shunda Qin(秦顺达), Hongxia Ge(葛红霞), Rongjun Cheng(程荣军). Chin. Phys. B, 2018, 27(5): 050503.
[14] Traffic flow velocity disturbance characteristics and control strategy at the bottleneck of expressway
Jun-Wei Zeng(曾俊伟), Yong-Sheng Qian(钱勇生), Xu-Ting Wei(魏谞婷), Xiao Feng(冯骁). Chin. Phys. B, 2018, 27(12): 124502.
[15] Stability analysis of traffic flow with extended CACC control models
Ya-Zhou Zheng(郑亚周), Rong-Jun Cheng(程荣军), Siu-Ming Lo(卢兆明), Hong-Xia Ge(葛红霞). Chin. Phys. B, 2016, 25(6): 060506.
No Suggested Reading articles found!