Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 017701    DOI: 10.1088/1674-1056/22/1/017701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Composition and misfit strain dependence of electrocaloric effect of Pb1-xSrxTiO3 thin films

Qiu Jian-Hua (邱建华), Ding Jian-Ning (丁建宁), Yuan Ning-Yi (袁宁一), Wang Xiu-Qin (王秀琴)
Center for low-dimensional materials, micro-nano devices and system, Changzhou University, Changzhou 213164, China
Abstract  A Landau-Devonshire thermodynamic theory is employed to investigate the effects of composition and misfit strain on the room-temperature electrocaloric effect of epitaxial Pb1-xSrxTiO3 thin films. The “temperature-misfit strain” phase diagrams with the Sr composition x of 0.1, 0.3, and 0.5 are constructed. The introduction of Sr composition reduces the Curie temperature greatly, and enhances the electrocaloric effect. Moreover, the electrocaloric effect largely depends on the misfit strain. Therefore, the Sr composition and the misfit strain can be controlled to obtain the giant room-temperature electrocaloric effect.
Keywords:  phase diagram      phase transition      electrocaloric effect  
Received:  26 April 2012      Revised:  01 June 2012      Accepted manuscript online: 
PACS:  77.22.Ej (Polarization and depolarization)  
  77.70.+a (Pyroelectric and electrocaloric effects)  
  77.80.Bh  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10904053), the Natural Science Foundation for Colleges and Universities of Jiangsu Province, China (Grant No. 09KJB140002), and the Priority Academic Program Development of Jiangsu Higher Education Institutions and Qing Lan Project.
Corresponding Authors:  Ding Jian-Ning     E-mail:  dingjn@cczu.edu.cn

Cite this article: 

Qiu Jian-Hua (邱建华), Ding Jian-Ning (丁建宁), Yuan Ning-Yi (袁宁一), Wang Xiu-Qin (王秀琴) Composition and misfit strain dependence of electrocaloric effect of Pb1-xSrxTiO3 thin films 2013 Chin. Phys. B 22 017701

[1] Olsen R B, Butler W F, Payne D A, Tuttle B A and Held P C 1980 Phys. Rev. Lett. 45 1436
[2] Lawless W N 1977 Phys. Rev. B 16 433
[3] Lombardo G and Pohl R O 1965 Phys. Rev. Lett. 15 291
[4] Tuttle B A and Payne D A 1981 Ferroelectrics 37 603
[5] Mischenko A S, Zhang Q, Scott J F, Whatmore R W and Mathur N D 2006 Science 311 1270
[6] Qiu J H and Jiang Q 2008 J. Appl. Phys. 103 084105
[7] Li B, Wang J B, Zhong X L, Wang F and Zhou Y C 2010 J. Appl. Phys. 107 014109
[8] Karthik J and Martin L W 2011 Appl. Phys. Lett. 99 032904
[9] Akcay G, Alpay S P, Mantese J V and Rossetti G A 2007 Appl. Phys. Lett. 90 252909
[10] Bai Y, Zheng G P and Shi S Q 2010 Appl. Phys. Lett. 96 192902
[11] Akcay G, Alpay S P, Rossetti G A and Scott J F 2008 J. Appl. Phys. 103 024104
[12] Cao H X and Li Z Y 2009 J. Appl. Phys. 106 094104
[13] Zhang X, Wang J B, Li B, Zhong X L, Lou X J and Zhou Y C 2011 J. Appl. Phys. 109 126102
[14] Mischenko A S, Zhang Q, Whatmore R W, Scott J F and Mathur N D 2006 Appl. Phys. Lett. 89 242912
[15] Correia T M, Young J S, Whatmore R W, Scott J F, Mathur N D and Zhang Q 2009 Appl. Phys. Lett. 95 182904
[16] Sebald G, Seveyrat L, Guyomar D, Lebrun L, Guiffard B and Pruvost S 2006 J. Appl. Phys. 100 124112
[17] Perantie J, Hagberg J, Unsimaki A and Jantunen H 2010 Phys. Rev. B 82 134119
[18] Neese B, Chu B J, Lu S G, Wang Y, Furman E and Zhang Q M 2008 Science 321 821
[19] Lu S G, Rocheckziheckc B, Zhang Q M, Kutnjak Z and Neese B 2011 Appl. Phys. Lett. 98 122906
[20] Liu S W, Lin Y, Weaver J, Donner W, Chen X, Chen C L, Jiang J C, Meletis E I and Bhalla A 2004 Appl. Phys. Lett. 85 3202
[21] Liu S W, Weaver J, Yuan Z, Donner W, Chen C L, Jiang J C, Meletis E I, Chang W, Kirchoefer S W, Horwitz J and Bhalla A 2005 Appl. Phys. Lett. 87 142905
[22] Li X T, Du P Y, Mak C L and Wong K H 2007 Appl. Phys. Lett. 90 262906
[23] Jiang Y P, Tang X G, Liu Q X, Zhou Y C and Chan-Wong L H 2008 Chin. Phys. Lett. 25 3044
[24] Normura S and Sawada S 1955 J. Phys. Soc. Jpn. 10 108
[25] Rispens G, Heuver J A and Noheda B 2010 Appl. Phys. Lett. 97 262901
[26] Qiu J H and Jiang Q 2009 Eur. Phys. J. B 71 15
[27] Qiu J H, Ding J N, Yuan N Y, Wang X Q and Yang J 2011 Eur. Phys. J. B 84 25
[28] Pertsev N A, Zembilgotov A G and Tagantsev A K 1998 Phys. Rev. Lett. 80 1988
[29] Qiu J H, Ding J N, Yuan N Y, Wang X Q and Yang J 2011 Solid State Commun. 152 856
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[4] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[5] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[6] High Chern number phase in topological insulator multilayer structures: A Dirac cone model study
Yi-Xiang Wang(王义翔) and Fu-Xiang Li(李福祥). Chin. Phys. B, 2022, 31(9): 090501.
[7] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[8] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[9] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[10] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[11] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[12] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[13] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[14] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[15] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
No Suggested Reading articles found!