Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(12): 128101    DOI: 10.1088/1674-1056/21/12/128101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

The influence of SixNy interlayer on GaN film grown on Si(111) substrate

Peng Dong-Sheng (彭冬生), Chen Zhi-Gang (陈志刚), Tan Cong-Cong (谭聪聪)
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
Abstract  A method to drastically reduce dislocation density in a GaN film grown on an Si(111) substrate is newly developed. In this method, the SixNy interlayer which is deposited on an AlN buffer layer in situ is introduced to grow the GaN film laterally. The crack-free GaN film with thickness over 1.7 micron is grown on an Si(111) substrate successfully. Synthesized GaN epilayer is characterized by X-ray diffraction (XRD), atomic force microscope (AFM), and Raman spectrum. The test results show that the GaN crystal reveals a wurtzite structure with the <0001> crystal orientation and the full width at half maximum of the X-ray diffraction curve in the (0002) plane is as low as 403 arcsec for the GaN film grown on the Si substrate with an SixNy interlayer. In addition, Raman scattering is used to study the stress in the sample. The results indicate that the SixNy interlayer can more effectively accommodate the strain energy. So the dislocation density can be reduced drastically, and the crystal quality of GaN film can be greatly improved by introducing SixNy interlayer.
Keywords:  SixNy interlayer      silicon substrate      GaN film      Raman scattering  
Received:  01 April 2012      Revised:  08 May 2012      Accepted manuscript online: 
PACS:  81.05.Ea (III-V semiconductors)  
  81.15.Kk (Vapor phase epitaxy; growth from vapor phase)  
  61.72.-y (Defects and impurities in crystals; microstructure)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60806017), the Science and Technology Program of Shenzhen, China (Grant No. JC201005280455A ), the Shenzhen University Research and Development Program, China (Grant No. 201128), and the Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, China (Grant No. 201208).
Corresponding Authors:  Peng Dong-Sheng     E-mail:  pengdongsheng@163.com

Cite this article: 

Peng Dong-Sheng (彭冬生), Chen Zhi-Gang (陈志刚), Tan Cong-Cong (谭聪聪) The influence of SixNy interlayer on GaN film grown on Si(111) substrate 2012 Chin. Phys. B 21 128101

[1] Sun W, Shatalov M, Deng J, Hu X, Yang J, Lunev A, Bilenko Y, Shur M and Gask R 2010 Appl. Phys. Lett. 96 061102
[2] Kim K S, Kim J H, Jung S J, Park Y J and Cho S N 2010 Appl. Phys. Lett. 96 091104
[3] Bayram B, Jean C, Stefan E, Romain Q and Ekmel O 2007 Photon. Nanostruct. 5 86
[4] Serkan B, Mutlu G, HongBo Y and Ekmel O 2006 Appl. Phys. Lett. 89 073503
[5] Zhang W, Hao Q Y, Liu C C and Feng Y C 2008 J. Alloys Compd. 456 368
[6] Huang X H, Liu J P, Fan Y M, Kong J J, Yang H and Wang H B 2012 Chin. Phys. B 21 037105
[7] Weng X, Raghavan S, Acord J D, Jain A, Dickey E C and Redwing J M 2007 J. Cryst. Growth 300 217
[8] Dadgar A, Veit P, Schulze F, Bläsing J, Krtschil A, Witte H, Diez A, Hempel T, Christen J, Clos R and Krost A 2007 Thin Solid Films 515 4356
[9] Liu Z, Wang X L, Wang J X, Hu G X, Guo L C, Li J P, Li J M and Zeng Y P 2007 J. Cryst. Growth 298 281
[10] Xiong J J, Tang J J, Liang T, Wang Y, Xue C Y, Shi W L and Zhang W D 2010 Appl. Surf. Sci. 257 1161
[11] Xue X Y, Xu S R, Zhang J C, Lin Z Y, Ma J C, Liu Z Y, Xue J S and Hao Y 2012 Chin. Phys. B 21 027803
[12] Peng D S, Feng Y C and Niu H B 2009 J. Alloys Compd. 476 629
[13] Dobos L, Pécz B, Tóth L, Horváth Z J, Horváth Z E, Beaumont B and Bougrioua Z 2008 Vacuum 82 794
[14] Pan X, Wei M, Yang C B, Xiao H L, Wang C M and Wang X L 2011 J. Cryst. Growth 318 464
[15] Kucheye S O, Bradby J E, Williams J S and Jagadish C 2000 Appl. Phys. Lett. 77 3373
[16] Dadgar A, Schulze F, Zettler T, Haberland K, Clos R, Straβburger G, Bläsing J, Diez A and Krost A 2004 J. Cryst. Growth 272 72
[17] Polian A, Grimsditch M and Grzegory I 1996 J. Appl. Phys. 79 3343
[18] Gleize J, Demangeot F, Frandon J, Renucci M A, Widmann F and Daudin B 1999 Appl. Phys. Lett. 74 703
[1] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[2] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[3] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[4] High-pressure Raman study of osmium and rhenium up to 200 GPa and pressure dependent elastic shear modulus C44
Jingyi Liu(刘静仪), Yu Tao(陶雨), Chunmei Fan(范春梅), Binbin Wu(吴彬彬), Qiqi Tang(唐琦琪), and Li Lei(雷力). Chin. Phys. B, 2022, 31(3): 037801.
[5] Raman phonon anomalies in Sr(Fe1-xCox)2As2
Yanxing Yang(杨彦兴), Hewei Zhang(张鹤巍), and Haizheng Zhuang(庄海正). Chin. Phys. B, 2022, 31(2): 027401.
[6] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[7] Fractal microstructure of Ag film via plasma discharge as SERS substrates
Xue-Fen Kan(阚雪芬), Cheng Yin(殷澄), Zhuang-Qi Cao(曹庄琪), Wei Su(苏巍), Ming-Lei Shan(单鸣雷), and Xian-Ping Wang(王贤平). Chin. Phys. B, 2021, 30(12): 125201.
[8] Raman scattering from highly-stressed anvil diamond
Shan Liu(刘珊), Qiqi Tang(唐琦琪), Binbin Wu(吴彬彬), Feng Zhang(张峰), Jingyi Liu(刘静仪), Chunmei Fan(范春梅), and Li Lei(雷力). Chin. Phys. B, 2021, 30(1): 016301.
[9] Lattice deformation in epitaxial Fe3O4 films on MgO substrates studied by polarized Raman spectroscopy
Yang Yang(杨洋), Qiang Zhang(张强), Wenbo Mi(米文博), Xixiang Zhang(张西祥). Chin. Phys. B, 2020, 29(8): 083302.
[10] Raman scattering study of two-dimensional magnetic van der Waals compound VI3
Yi-Meng Wang(王艺朦), Shang-Jie Tian(田尚杰), Cheng-He Li(李承贺), Feng Jin(金峰), Jian-Ting Ji(籍建葶), He-Chang Lei(雷和畅), Qing-Ming Zhang(张清明). Chin. Phys. B, 2020, 29(5): 056301.
[11] Forward-headed structure change of acetic acid-water binary system by stimulated Raman scattering
Zhe Liu(刘喆), Bo Yang(杨博), Hong-Liang Zhao(赵洪亮), Zhan-Long Li(李占龙), Zhi-Wei Men(门志伟), Xiao-Feng Wang(王晓峰), Ning Wang(王宁), Xian-Wen Cao(曹献文), Sheng-Han Wang(汪胜晗), Cheng-Lin Sun(孙成林). Chin. Phys. B, 2019, 28(9): 094206.
[12] Characterization of structural transitions and lattice dynamics of hybrid organic-inorganic perovskite CH3NH3PbI3
Feng Jin(金峰), Jian-Ting Ji(籍建葶), Chao Xie(谢超), Yi-Meng Wang(王艺朦), Shu-Na He(贺淑娜), Lei Zhang(张磊), Zhao-Rong Yang(杨昭荣), Feng Yan(严锋), Qing-Ming Zhang(张清明). Chin. Phys. B, 2019, 28(7): 076102.
[13] Raman scattering study of magnetic layered MPS3 crystals (M=Mn, Fe, Ni)
Yi-Meng Wang(王艺朦), Jian-Feng Zhang(张建丰), Cheng-He Li(李承贺), Xiao-Li Ma(马肖莉), Jian-Ting Ji(籍建葶), Feng Jin(金峰), He-Chang Lei(雷和畅), Kai Liu(刘凯), Wei-Lu Zhang(张玮璐), Qing-Ming Zhang(张清明). Chin. Phys. B, 2019, 28(5): 056301.
[14] Research on co-propagation of QKD and classical communication by reducing the classical optical power
Ru-Shi He(何如适), Mu-Sheng Jiang(江木生), Yang Wang(汪洋), Ya-Hui Gan(甘亚辉), Chun Zhou(周淳), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2019, 28(4): 040303.
[15] Selective synthesis of three-dimensional ZnO@Ag/SiO2@Ag nanorod arrays as surface-enhanced Raman scattering substrates with tunable interior dielectric layer
Jia-Jia Mu(牟佳佳), Chang-Yi He(何畅意), Wei-Jie Sun(孙伟杰), Yue Guan(管越). Chin. Phys. B, 2019, 28(12): 124204.
No Suggested Reading articles found!